aoi_clip_high_resolution_concateFusion_gpt_froce_same_aoi_256_256
This model is a fine-tuned version of OFA-Sys/chinese-clip-vit-base-patch16 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.4601
- Accuracy: 0.0939
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 25
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8826 | 19.9458 | 920 | 3.4826 | 0.1045 |
0.5489 | 39.8916 | 1840 | 3.5595 | 0.1049 |
0.5099 | 59.8374 | 2760 | 3.6743 | 0.1007 |
0.4939 | 79.7832 | 3680 | 3.7631 | 0.1004 |
0.4833 | 99.7290 | 4600 | 4.0003 | 0.0988 |
0.4777 | 119.6748 | 5520 | 4.0105 | 0.0973 |
0.472 | 139.6206 | 6440 | 4.1967 | 0.0965 |
0.472 | 159.5664 | 7360 | 4.2894 | 0.0954 |
0.4717 | 179.5122 | 8280 | 4.4150 | 0.0945 |
0.4665 | 199.4580 | 9200 | 4.4601 | 0.0942 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for sharkMeow/aoi_clip_high_resolution_concateFusion_gpt_froce_same_aoi_256_256
Base model
OFA-Sys/chinese-clip-vit-base-patch16