metadata
license: apache-2.0
base_model: unsloth/SmolLM-360M
tags:
- alignment-handbook
- trl
- unsloth
- mlx
datasets:
- Magpie-Align/Magpie-Pro-300K-Filtered
- bigcode/self-oss-instruct-sc2-exec-filter-50k
- teknium/OpenHermes-2.5
- HuggingFaceTB/everyday-conversations-llama3.1-2k
library_name: transformers
language:
- en
shashikanth-a/SmolLM-360M-4bit
The Model shashikanth-a/SmolLM-360M-4bit was converted to MLX format from unsloth/SmolLM-360M using mlx-lm version 0.19.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("shashikanth-a/SmolLM-360M-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)