Edit model card

This abalation underperforms the tried and true augmxnt/shisa-gamma-7b-v1 and if you're looking for a Mistral 7B based model, you should probably go with that.

Performance

Measured using a fork of Lightblue's Shaberi benchmark framework:

Model Average ELYZA-tasks-100 MT-Bench Rakuda Tengu-Bench
gpt-4-turbo-2024-04-09 8.75 8.78 8.74 9.18 8.31
gpt-4o-2024-05-13 8.72 8.88 8.69 9.15 8.16
gemini-1.5-pro 8.58 8.58 8.93 9.20 7.61
claude-3-opus-20240229 8.55 8.64 8.58 8.75 8.23
CohereForAI/c4ai-command-r-plus 7.69 7.50 7.43 9.05 6.79
shisa-ai/shisa-v1-llama3-70b 7.30 7.34 7.67 8.15 6.04
gpt-3.5-turbo-0125 7.17 7.24 6.98 7.64 6.82
shisa-ai/shisa-v1-llama3-70b.2e5 7.17 7.16 7.45 7.98 6.09
karakuri-ai/karakuri-lm-8x7b-chat-v0.1 7.00 7.18 6.30 7.98 6.55
karakuri-ai/karakuri-lm-70b-chat-v0.1 6.84 6.86 6.43 7.85 6.23
lightblue/ao-karasu-72B 6.81 7.19 6.54 7.25 6.27
shisa-ai/shisa-v1-llama3-8b 6.59 6.67 6.95 7.05 5.68
microsoft/Phi-3-medium-128k-instruct 6.48 7.10 5.92 6.84 6.04
shisa-ai/shisa-swallowmx-13a47b-v1 6.17 6.48 6.07 7.11 5.03
lightblue/suzume-llama-3-8B-japanese 5.96 6.68 4.96 6.68 5.53
augmxnt/shisa-gamma-7b-v1 5.82 5.96 5.02 6.85 5.47
shisa-ai/shisa-v1-phi3-14b 5.77 6.28 5.26 6.55 5.01
shisa-ai/shisa-v1-gemma-8b 5.64 6.50 5.42 5.10 5.55
Rakuten/RakutenAI-7B-chat 5.58 5.92 4.60 6.58 5.24
lightblue/qarasu-14B-chat-plus-unleashed 5.20 5.58 4.74 5.46 5.01
shisa-ai/shisa-v1-mistral0.3-7b 5.11 5.64 6.10 3.83 4.86
cyberagent/calm2-7b-chat 4.76 4.90 3.58 5.75 4.81
mistralai/Mistral-7B-Instruct-v0.2 4.69 5.78 4.65 3.80 4.53
shisa-ai/shisa-v1-yi1.5-9b 4.63 5.98 4.28 3.26 5.00
augmxnt/shisa-7b-v1 4.50 4.63 3.95 4.89 4.53

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: inst
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/mistral

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-mistral0.3-7b

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

outputs/mistral

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.8564 0.0045 1 0.7107
0.6131 0.5023 111 0.4259
0.6077 1.0045 222 0.3715
0.4173 1.4932 333 0.3617
0.3812 1.9955 444 0.3468
0.2408 2.4842 555 0.3791

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
7.25B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shisa-ai/shisa-v1-mistral0.3-7b

Finetuned
(64)
this model
Merges
1 model