zephyr-7b-sft-lora-accum4-lr5e_5-dpo
This model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5041
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5276 | 0.55 | 13 | 1.4329 |
1.352 | 1.57 | 27 | 1.2406 |
1.1329 | 2.55 | 40 | 1.0909 |
1.0628 | 3.57 | 54 | 1.0299 |
1.0022 | 4.55 | 67 | 0.9812 |
0.957 | 5.57 | 81 | 0.9445 |
0.9148 | 6.55 | 94 | 0.8948 |
0.8443 | 7.57 | 108 | 0.8432 |
0.7645 | 8.55 | 121 | 0.7847 |
0.6952 | 9.57 | 135 | 0.7192 |
0.639 | 10.55 | 148 | 0.6671 |
0.5683 | 11.57 | 162 | 0.6112 |
0.5223 | 12.55 | 175 | 0.5777 |
0.4958 | 13.57 | 189 | 0.5592 |
0.4592 | 14.55 | 202 | 0.5381 |
0.4602 | 15.57 | 216 | 0.5100 |
0.4486 | 16.55 | 229 | 0.5117 |
0.4274 | 17.57 | 243 | 0.5084 |
0.4239 | 18.55 | 256 | 0.4909 |
0.4055 | 19.57 | 270 | 0.5006 |
0.3931 | 20.55 | 283 | 0.4959 |
0.3986 | 21.57 | 297 | 0.4853 |
0.3977 | 22.55 | 310 | 0.4859 |
0.3936 | 23.57 | 324 | 0.4974 |
0.3821 | 24.55 | 337 | 0.4952 |
0.3877 | 25.57 | 351 | 0.4949 |
0.3681 | 26.55 | 364 | 0.4866 |
0.3681 | 27.57 | 378 | 0.4926 |
0.371 | 28.55 | 391 | 0.4817 |
0.3604 | 29.57 | 405 | 0.4923 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for shkang/zephyr-7b-sft-lora-accum4-lr5e_5-dpo
Base model
mistralai/Mistral-7B-v0.1
Finetuned
HuggingFaceH4/zephyr-7b-beta