|
--- |
|
base_model: silmi224/finetune-led-35000 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: led-risalah_data_v17_3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# led-risalah_data_v17_3 |
|
|
|
This model is a fine-tuned version of [silmi224/finetune-led-35000](https://huggingface.co/silmi224/finetune-led-35000) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6551 |
|
- Rouge1: 25.33 |
|
- Rouge2: 12.4758 |
|
- Rougel: 18.3801 |
|
- Rougelsum: 24.0275 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 2.9826 | 1.0 | 20 | 2.5250 | 11.8736 | 3.4553 | 8.0701 | 10.4233 | |
|
| 2.5516 | 2.0 | 40 | 2.2001 | 15.7664 | 5.0213 | 10.8555 | 14.1975 | |
|
| 2.2334 | 3.0 | 60 | 2.0424 | 17.0425 | 6.006 | 10.956 | 15.2795 | |
|
| 1.9577 | 4.0 | 80 | 1.9305 | 19.1792 | 7.6754 | 12.651 | 17.7519 | |
|
| 1.8602 | 5.0 | 100 | 1.8351 | 22.4846 | 8.3095 | 14.0022 | 20.587 | |
|
| 1.702 | 6.0 | 120 | 1.7809 | 21.9395 | 8.5042 | 14.9427 | 20.3436 | |
|
| 1.6525 | 7.0 | 140 | 1.7286 | 23.7825 | 10.9231 | 15.9319 | 22.0902 | |
|
| 1.5285 | 8.0 | 160 | 1.6839 | 24.1286 | 11.2382 | 16.7057 | 22.3731 | |
|
| 1.4623 | 9.0 | 180 | 1.6644 | 23.8767 | 12.3834 | 17.5761 | 22.6869 | |
|
| 1.4175 | 10.0 | 200 | 1.6551 | 25.33 | 12.4758 | 18.3801 | 24.0275 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|