hanasim's picture
End of training
06e46c2 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Breeze DSW Kannada - base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs kn_in
          type: google/fleurs
          config: kn_in
          split: test
          args: kn_in
        metrics:
          - name: Wer
            type: wer
            value: 30.612702366127024

Breeze DSW Kannada - base

This model is a fine-tuned version of openai/whisper-base on the google/fleurs kn_in dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2258
  • Wer: 30.6127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7196 1.03 100 0.5166 55.2130
0.2769 2.06 200 0.2532 36.1594
0.1896 4.02 300 0.2167 32.7298
0.1384 5.04 400 0.2037 31.8356
0.1099 7.0 500 0.2030 31.0560
0.0707 8.03 600 0.2153 31.2453
0.052 9.06 700 0.2258 30.6127
0.0375 11.02 800 0.2413 31.2204
0.0256 12.05 900 0.2507 31.0635
0.0245 14.01 1000 0.2549 31.1059

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0