|
--- |
|
license: mit |
|
datasets: |
|
- squad_v2 |
|
- squad |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- deberta |
|
- deberta-v3 |
|
- question-answering |
|
- squad |
|
- squad_v2 |
|
- lora |
|
- peft |
|
model-index: |
|
- name: sjrhuschlee/deberta-v3-large-squad2 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 87.956 |
|
name: Exact Match |
|
- type: f1 |
|
value: 90.776 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 89.29 |
|
name: Exact Match |
|
- type: f1 |
|
value: 94.985 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: adversarial_qa |
|
type: adversarial_qa |
|
config: adversarialQA |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 31.167 |
|
name: Exact Match |
|
- type: f1 |
|
value: 41.787 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_adversarial |
|
type: squad_adversarial |
|
config: AddOneSent |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 75.993 |
|
name: Exact Match |
|
- type: f1 |
|
value: 80.495 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts |
|
type: squadshifts |
|
config: amazon |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 66.272 |
|
name: Exact Match |
|
- type: f1 |
|
value: 77.941 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts |
|
type: squadshifts |
|
config: new_wiki |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 81.456 |
|
name: Exact Match |
|
- type: f1 |
|
value: 89.142 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts |
|
type: squadshifts |
|
config: nyt |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 81.739 |
|
name: Exact Match |
|
- type: f1 |
|
value: 88.826 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts |
|
type: squadshifts |
|
config: reddit |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 61.4 |
|
name: Exact Match |
|
- type: f1 |
|
value: 69.999 |
|
name: F1 |
|
--- |
|
|
|
# deberta-v3-large for Extractive QA |
|
|
|
This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
|
|
This model was trained using LoRA available through the [PEFT library](https://github.com/huggingface/peft). |
|
|
|
## Overview |
|
**Language model:** deberta-v3-large |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Infrastructure**: 1x NVIDIA 3070 |
|
|
|
## Model Usage |
|
|
|
### Using Transformers |
|
This uses the merged weights (base model weights + LoRA weights) to allow for simple use in Transformers pipelines. It has the same performance as using the weights separately when using the PEFT library. |
|
```python |
|
import torch |
|
from transformers import( |
|
AutoModelForQuestionAnswering, |
|
AutoTokenizer, |
|
pipeline |
|
) |
|
model_name = "sjrhuschlee/deberta-v3-large-squad2" |
|
|
|
# a) Using pipelines |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
qa_input = { |
|
'question': 'Where do I live?', |
|
'context': 'My name is Sarah and I live in London' |
|
} |
|
res = nlp(qa_input) |
|
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'} |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
question = 'Where do I live?' |
|
context = 'My name is Sarah and I live in London' |
|
encoding = tokenizer(question, context, return_tensors="pt") |
|
start_scores, end_scores = model( |
|
encoding["input_ids"], |
|
attention_mask=encoding["attention_mask"], |
|
return_dict=False |
|
) |
|
|
|
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) |
|
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1] |
|
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) |
|
# 'London' |
|
``` |
|
|
|
## Metrics |
|
|
|
```bash |
|
# Squad v2 |
|
{ |
|
"eval_HasAns_exact": 84.83468286099865, |
|
"eval_HasAns_f1": 90.48374860633226, |
|
"eval_HasAns_total": 5928, |
|
"eval_NoAns_exact": 91.0681244743482, |
|
"eval_NoAns_f1": 91.0681244743482, |
|
"eval_NoAns_total": 5945, |
|
"eval_best_exact": 87.95586625115808, |
|
"eval_best_exact_thresh": 0.0, |
|
"eval_best_f1": 90.77635490089573, |
|
"eval_best_f1_thresh": 0.0, |
|
"eval_exact": 87.95586625115808, |
|
"eval_f1": 90.77635490089592, |
|
"eval_runtime": 623.1333, |
|
"eval_samples": 11951, |
|
"eval_samples_per_second": 19.179, |
|
"eval_steps_per_second": 0.799, |
|
"eval_total": 11873 |
|
} |
|
|
|
# Squad |
|
{ |
|
"eval_exact_match": 89.29044465468307, |
|
"eval_f1": 94.9846365606959, |
|
"eval_runtime": 553.7132, |
|
"eval_samples": 10618, |
|
"eval_samples_per_second": 19.176, |
|
"eval_steps_per_second": 0.8 |
|
} |
|
``` |
|
|
|
### Using with Peft |
|
**NOTE**: This requires code in the PR https://github.com/huggingface/peft/pull/473 for the PEFT library. |
|
```python |
|
#!pip install peft |
|
|
|
from peft import LoraConfig, PeftModelForQuestionAnswering |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer |
|
model_name = "sjrhuschlee/deberta-v3-large-squad2" |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 1 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4.0 |
|
|
|
### LoRA Config |
|
``` |
|
{ |
|
"base_model_name_or_path": "microsoft/deberta-v3-large", |
|
"bias": "none", |
|
"fan_in_fan_out": false, |
|
"inference_mode": true, |
|
"init_lora_weights": true, |
|
"lora_alpha": 32, |
|
"lora_dropout": 0.1, |
|
"modules_to_save": ["qa_outputs"], |
|
"peft_type": "LORA", |
|
"r": 8, |
|
"target_modules": [ |
|
"query_proj", |
|
"key_proj", |
|
"value_proj", |
|
"dense" |
|
], |
|
"task_type": "QUESTION_ANS" |
|
} |
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |