|
--- |
|
license: mit |
|
datasets: |
|
- squad_v2 |
|
- squad |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- deberta |
|
- deberta-v3 |
|
- question-answering |
|
- squad |
|
- squad_v2 |
|
--- |
|
|
|
# deberta-v3-large for Extractive QA |
|
|
|
This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
|
|
## Overview |
|
**Language model:** deberta-v3-large |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Infrastructure**: 1x NVIDIA 3070 |
|
|
|
## Model Usage |
|
|
|
### Using with Peft |
|
```python |
|
from peft import LoraConfig, PeftModelForQuestionAnswering |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer |
|
model_name = "sjrhuschlee/deberta-v3-large-squad2" |
|
``` |
|
|
|
### Using the Merged Model |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
model_name = "sjrhuschlee/deberta-v3-large-squad2" |
|
|
|
# a) Using pipelines |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
qa_input = { |
|
'question': 'Where do I live?', |
|
'context': 'My name is Sarah and I live in London' |
|
} |
|
res = nlp(qa_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |