sjrhuschlee's picture
Update README.md
e517659
|
raw
history blame
1.47 kB
---
license: mit
datasets:
- squad_v2
- squad
language:
- en
library_name: transformers
tags:
- deberta
- deberta-v3
- question-answering
- squad
- squad_v2
---
# deberta-v3-large for Extractive QA
This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
## Overview
**Language model:** deberta-v3-large
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Infrastructure**: 1x NVIDIA 3070
## Model Usage
### Using with Peft
```python
from peft import LoraConfig, PeftModelForQuestionAnswering
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model_name = "sjrhuschlee/deberta-v3-large-squad2"
```
### Using the Merged Model
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "sjrhuschlee/deberta-v3-large-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```