|
--- |
|
library_name: skrl |
|
tags: |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- skrl |
|
model-index: |
|
- name: PPO |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 5251.26 +/- 92.89 |
|
name: Total reward (mean) |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: OmniIsaacGymEnvs-Ingenuity |
|
type: OmniIsaacGymEnvs-Ingenuity |
|
--- |
|
|
|
# OmniIsaacGymEnvs-Ingenuity-PPO |
|
|
|
Trained agent model for [NVIDIA Omniverse Isaac Gym](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs) environment |
|
|
|
- **Task:** Ingenuity |
|
- **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html) |
|
|
|
# Usage (with skrl) |
|
|
|
```python |
|
from skrl.utils.huggingface import download_model_from_huggingface |
|
|
|
# assuming that there is an agent named `agent` |
|
path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-Ingenuity-PPO") |
|
agent.load(path) |
|
``` |
|
|
|
# Hyperparameters |
|
|
|
```python |
|
# https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters |
|
cfg_ppo = PPO_DEFAULT_CONFIG.copy() |
|
cfg_ppo["rollouts"] = 16 # memory_size |
|
cfg_ppo["learning_epochs"] = 8 |
|
cfg_ppo["mini_batches"] = 4 # 16 * 4096 / 16384 |
|
cfg_ppo["discount_factor"] = 0.99 |
|
cfg_ppo["lambda"] = 0.95 |
|
cfg_ppo["learning_rate"] = 1e-3 |
|
cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL |
|
cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.016} |
|
cfg_ppo["random_timesteps"] = 0 |
|
cfg_ppo["learning_starts"] = 0 |
|
cfg_ppo["grad_norm_clip"] = 1.0 |
|
cfg_ppo["ratio_clip"] = 0.2 |
|
cfg_ppo["value_clip"] = 0.2 |
|
cfg_ppo["clip_predicted_values"] = True |
|
cfg_ppo["entropy_loss_scale"] = 0.0 |
|
cfg_ppo["value_loss_scale"] = 1.0 |
|
cfg_ppo["kl_threshold"] = 0 |
|
cfg_ppo["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01 |
|
cfg_ppo["state_preprocessor"] = RunningStandardScaler |
|
cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device} |
|
cfg_ppo["value_preprocessor"] = RunningStandardScaler |
|
cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device} |
|
# logging to TensorBoard and writing checkpoints |
|
cfg_ppo["experiment"]["write_interval"] = 32 |
|
cfg_ppo["experiment"]["checkpoint_interval"] = 320 |
|
``` |
|
|