See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-160m
bf16: true
chat_template: llama3
datasets:
- data_files:
- b12005b8824189e8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b12005b8824189e8_train_data.json
type:
field_instruction: title
field_output: keywords
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn5601/96539b3d-465e-4ead-a68e-d0f8380df2ed
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b12005b8824189e8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 96539b3d-465e-4ead-a68e-d0f8380df2ed
wandb_project: god
wandb_run: your_name
wandb_runid: 96539b3d-465e-4ead-a68e-d0f8380df2ed
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
96539b3d-465e-4ead-a68e-d0f8380df2ed
This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.2420
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.5006 | 0.0058 | 1 | 5.9769 |
5.5759 | 0.0519 | 9 | 5.7626 |
5.0034 | 0.1037 | 18 | 4.9021 |
4.3982 | 0.1556 | 27 | 4.3000 |
3.8321 | 0.2075 | 36 | 3.7707 |
3.4402 | 0.2594 | 45 | 3.5292 |
3.291 | 0.3112 | 54 | 3.4005 |
3.1737 | 0.3631 | 63 | 3.3237 |
3.3567 | 0.4150 | 72 | 3.2791 |
3.2126 | 0.4669 | 81 | 3.2543 |
3.1963 | 0.5187 | 90 | 3.2445 |
3.0855 | 0.5706 | 99 | 3.2420 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 50
Model tree for sn5601/96539b3d-465e-4ead-a68e-d0f8380df2ed
Base model
JackFram/llama-160m