Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
  - d7f84c907b3b5558_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d7f84c907b3b5558_train_data.json
  type:
    field_input: long_but_clean_text
    field_instruction: instruction
    field_output: summary
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56a1/357f742d-115b-43a7-9dcb-d2bbd9108c7e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/d7f84c907b3b5558_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 357f742d-115b-43a7-9dcb-d2bbd9108c7e
wandb_project: god
wandb_run: nek9
wandb_runid: 357f742d-115b-43a7-9dcb-d2bbd9108c7e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

357f742d-115b-43a7-9dcb-d2bbd9108c7e

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.3794 0.0140 1 10.3789
10.3784 0.1259 9 10.3786
10.3774 0.2517 18 10.3781
10.3774 0.3776 27 10.3776
10.3766 0.5035 36 10.3770
10.3761 0.6294 45 10.3763
10.3772 0.7552 54 10.3756
10.3743 0.8811 63 10.3751
15.5217 1.0070 72 10.3746
10.8144 1.1329 81 10.3743
11.7931 1.2587 90 10.3742
10.6649 1.3846 99 10.3742

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56a1/357f742d-115b-43a7-9dcb-d2bbd9108c7e

Adapter
(97)
this model