Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
  - e60591ddc71b968a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e60591ddc71b968a_train_data.json
  type:
    field_input: summary
    field_instruction: chapter
    field_output: summary_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56a2/2eef2f8b-f1bd-42d3-afe5-1d0ab9c87f40
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/e60591ddc71b968a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: disabled
wandb_name: 2eef2f8b-f1bd-42d3-afe5-1d0ab9c87f40
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2eef2f8b-f1bd-42d3-afe5-1d0ab9c87f40
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

2eef2f8b-f1bd-42d3-afe5-1d0ab9c87f40

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.3792 0.0055 1 10.3793
10.3782 0.0492 9 10.3791
10.3783 0.0984 18 10.3784
10.3766 0.1475 27 10.3776
10.3767 0.1967 36 10.3767
10.376 0.2459 45 10.3756
10.3755 0.2951 54 10.3746
10.3742 0.3443 63 10.3736
10.373 0.3934 72 10.3729
10.3733 0.4426 81 10.3724
10.3714 0.4918 90 10.3722
10.3717 0.5410 99 10.3721

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56a2/2eef2f8b-f1bd-42d3-afe5-1d0ab9c87f40

Adapter
(83)
this model