Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/llama-2-7b-chat
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 7e62e7c5601a1070_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7e62e7c5601a1070_train_data.json
  type:
    field_instruction: instruction
    field_output: response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 30
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56a3/a35ded2f-4483-4824-b9b4-4f28c5a7f8e1
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GiB
max_steps: 228
micro_batch_size: 1
mlflow_experiment_name: /tmp/7e62e7c5601a1070_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: a35ded2f-4483-4824-b9b4-4f28c5a7f8e1
wandb_project: god
wandb_run: gkz1
wandb_runid: a35ded2f-4483-4824-b9b4-4f28c5a7f8e1
warmup_raio: 0.03
warmup_ratio: 0.04
weight_decay: 0.01
xformers_attention: null

a35ded2f-4483-4824-b9b4-4f28c5a7f8e1

This model is a fine-tuned version of unsloth/llama-2-7b-chat on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 9
  • training_steps: 228

Training results

Training Loss Epoch Step Validation Loss
1.008 0.0023 1 1.9006
1.3142 0.0583 25 0.8641
1.1625 0.1166 50 0.7837
0.9954 0.1749 75 0.7699
0.8966 0.2332 100 0.7337
0.7947 0.2915 125 0.7220
0.8151 0.3498 150 0.7096
0.7536 0.4081 175 0.7049
0.6768 0.4664 200 0.7016
0.7727 0.5247 225 0.6974

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56a3/a35ded2f-4483-4824-b9b4-4f28c5a7f8e1

Adapter
(64)
this model