Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 471dd9cc962ef13d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/471dd9cc962ef13d_train_data.json
  type:
    field_input: id
    field_instruction: query
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56b1/8897553f-50c2-4506-a26b-c81a5f91e068
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/471dd9cc962ef13d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 8897553f-50c2-4506-a26b-c81a5f91e068
wandb_project: god
wandb_run: jr9w
wandb_runid: 8897553f-50c2-4506-a26b-c81a5f91e068
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

8897553f-50c2-4506-a26b-c81a5f91e068

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.3879 0.0005 1 10.3863
10.3814 0.0049 9 10.3857
10.3831 0.0097 18 10.3842
10.3813 0.0146 27 10.3827
10.381 0.0195 36 10.3808
10.3799 0.0244 45 10.3787
10.3789 0.0292 54 10.3766
10.3724 0.0341 63 10.3745
10.372 0.0390 72 10.3731
10.3701 0.0438 81 10.3722
10.3714 0.0487 90 10.3718
10.3708 0.0536 99 10.3717

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56b1/8897553f-50c2-4506-a26b-c81a5f91e068

Adapter
(97)
this model