See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: true
chat_template: llama3
datasets:
- data_files:
- 489aa59e0823f8b9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/489aa59e0823f8b9_train_data.json
type:
field_instruction: title
field_output: majority_type
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56b1/ed3f1be4-8f03-4069-809d-2a88476c18e1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/489aa59e0823f8b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: ed3f1be4-8f03-4069-809d-2a88476c18e1
wandb_project: god
wandb_run: jiez
wandb_runid: ed3f1be4-8f03-4069-809d-2a88476c18e1
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
ed3f1be4-8f03-4069-809d-2a88476c18e1
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7436
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
9.7221 | 0.0006 | 1 | 9.6906 |
5.6669 | 0.0052 | 9 | 4.9127 |
2.1868 | 0.0104 | 18 | 2.0402 |
1.3951 | 0.0157 | 27 | 1.3737 |
0.9458 | 0.0209 | 36 | 0.9531 |
0.8613 | 0.0261 | 45 | 0.8615 |
0.7844 | 0.0313 | 54 | 0.8017 |
0.8395 | 0.0365 | 63 | 0.7719 |
0.8185 | 0.0418 | 72 | 0.7544 |
0.6677 | 0.0470 | 81 | 0.7556 |
0.6623 | 0.0522 | 90 | 0.7454 |
0.6977 | 0.0574 | 99 | 0.7436 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for sn56b1/ed3f1be4-8f03-4069-809d-2a88476c18e1
Base model
TinyLlama/TinyLlama_v1.1