See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d7f0758d1fa1ea4a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d7f0758d1fa1ea4a_train_data.json
type:
field_input: url
field_instruction: text
field_output: language
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 3
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56b1/f9be4675-d4fe-4004-8f91-7a7a99b8ca4f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 25
micro_batch_size: 4
mlflow_experiment_name: /tmp/d7f0758d1fa1ea4a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: disabled
wandb_name: f9be4675-d4fe-4004-8f91-7a7a99b8ca4f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f9be4675-d4fe-4004-8f91-7a7a99b8ca4f
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: null
f9be4675-d4fe-4004-8f91-7a7a99b8ca4f
This model is a fine-tuned version of unsloth/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0045
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.3345 | 0.0103 | 1 | 11.1697 |
7.1289 | 0.0309 | 3 | 1.5264 |
0.1099 | 0.0619 | 6 | 0.0421 |
0.0007 | 0.0928 | 9 | 0.0095 |
0.0 | 0.1237 | 12 | 0.0073 |
0.0 | 0.1546 | 15 | 0.0057 |
0.0 | 0.1856 | 18 | 0.0049 |
0.0 | 0.2165 | 21 | 0.0046 |
0.0 | 0.2474 | 24 | 0.0045 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 20
Model tree for sn56b1/f9be4675-d4fe-4004-8f91-7a7a99b8ca4f
Base model
unsloth/gemma-2b-it