Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
  - c363ae3eadc4c069_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c363ae3eadc4c069_train_data.json
  type:
    field_instruction: prompt_lang
    field_output: answer_lang
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m1/1b7592f2-9ae4-4280-8212-f96a7b3cea94
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/c363ae3eadc4c069_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: disabled
wandb_name: 1b7592f2-9ae4-4280-8212-f96a7b3cea94
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1b7592f2-9ae4-4280-8212-f96a7b3cea94
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

1b7592f2-9ae4-4280-8212-f96a7b3cea94

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.1956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.4006 0.0004 1 10.4124
10.4024 0.0039 9 10.3999
10.3621 0.0078 18 10.3677
10.3433 0.0117 27 10.3320
10.3025 0.0156 36 10.2954
10.2678 0.0196 45 10.2617
10.2517 0.0235 54 10.2348
10.2221 0.0274 63 10.2160
10.2148 0.0313 72 10.2043
10.2025 0.0352 81 10.1981
10.2045 0.0391 90 10.1956
10.192 0.0430 99 10.1956

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56m1/1b7592f2-9ae4-4280-8212-f96a7b3cea94

Adapter
(83)
this model