farmery's picture
End of training
1f0ec08 verified
|
raw
history blame
4.4 kB
---
library_name: peft
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8897553f-50c2-4506-a26b-c81a5f91e068
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
- 471dd9cc962ef13d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/471dd9cc962ef13d_train_data.json
type:
field_input: id
field_instruction: query
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m2/8897553f-50c2-4506-a26b-c81a5f91e068
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/471dd9cc962ef13d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 8897553f-50c2-4506-a26b-c81a5f91e068
wandb_project: god
wandb_run: 06mj
wandb_runid: 8897553f-50c2-4506-a26b-c81a5f91e068
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
```
</details><br>
# 8897553f-50c2-4506-a26b-c81a5f91e068
This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3879 | 0.0005 | 1 | 10.3863 |
| 10.3814 | 0.0049 | 9 | 10.3857 |
| 10.3831 | 0.0097 | 18 | 10.3843 |
| 10.3813 | 0.0146 | 27 | 10.3827 |
| 10.3812 | 0.0195 | 36 | 10.3809 |
| 10.38 | 0.0244 | 45 | 10.3789 |
| 10.3791 | 0.0292 | 54 | 10.3768 |
| 10.3728 | 0.0341 | 63 | 10.3748 |
| 10.372 | 0.0390 | 72 | 10.3735 |
| 10.3705 | 0.0438 | 81 | 10.3726 |
| 10.372 | 0.0487 | 90 | 10.3722 |
| 10.3711 | 0.0536 | 99 | 10.3721 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1