See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: true
chat_template: llama3
datasets:
- data_files:
- d8f4fb4d99ac2bcb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d8f4fb4d99ac2bcb_train_data.json
type:
field_input: example
field_instruction: full_prompt
field_output: instruction
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m2/95ca4aa7-ab2c-4aa9-ad44-6af549080339
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/d8f4fb4d99ac2bcb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 95ca4aa7-ab2c-4aa9-ad44-6af549080339
wandb_project: god
wandb_run: u0x7
wandb_runid: 95ca4aa7-ab2c-4aa9-ad44-6af549080339
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
95ca4aa7-ab2c-4aa9-ad44-6af549080339
This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 45
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9585 | 0.0667 | 1 | 2.0294 |
2.0617 | 0.2667 | 4 | 2.0225 |
1.8343 | 0.5333 | 8 | 1.8266 |
1.5937 | 0.8 | 12 | 1.5095 |
1.325 | 1.0667 | 16 | 1.2316 |
0.9605 | 1.3333 | 20 | 0.9962 |
0.8431 | 1.6 | 24 | 0.8367 |
0.7358 | 1.8667 | 28 | 0.7405 |
0.6291 | 2.1333 | 32 | 0.6830 |
0.6869 | 2.4 | 36 | 0.6461 |
0.6781 | 2.6667 | 40 | 0.6284 |
0.6076 | 2.9333 | 44 | 0.6293 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for sn56m2/95ca4aa7-ab2c-4aa9-ad44-6af549080339
Base model
sethuiyer/Medichat-Llama3-8B