Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Hermes-3-Llama-3.1-8B
bf16: true
chat_template: llama3
datasets:
- data_files:
  - e51bf03bb498f9d1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e51bf03bb498f9d1_train_data.json
  type:
    field_input: menu
    field_instruction: submenu
    field_output: "\uB2E8\uACFC\uB300\uD559"
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m3/321707c0-4ea8-4130-bb14-e36f4b768cbb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/e51bf03bb498f9d1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 321707c0-4ea8-4130-bb14-e36f4b768cbb
wandb_project: god
wandb_run: 3wdr
wandb_runid: 321707c0-4ea8-4130-bb14-e36f4b768cbb
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

321707c0-4ea8-4130-bb14-e36f4b768cbb

This model is a fine-tuned version of NousResearch/Hermes-3-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 19

Training results

Training Loss Epoch Step Validation Loss
6.0391 0.1538 1 5.7509
6.0695 0.3077 2 5.7326
5.7627 0.6154 4 5.3715
4.5148 0.9231 6 4.1543
3.3447 1.2308 8 3.0086
2.4508 1.5385 10 1.6411
0.9829 1.8462 12 0.5055
0.2532 2.1538 14 0.1007
0.0464 2.4615 16 0.0243
0.0144 2.7692 18 0.0133

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56m3/321707c0-4ea8-4130-bb14-e36f4b768cbb

Adapter
(102)
this model