ResplendentAI/Aura_v2_7B AWQ
- Model creator: ResplendentAI
- Original model: Aura_v2_7B
Model Summary
The second version of the Aura line is a direct improvement over the original. Expect poetic and eloquent outputs with real emotion behind them.
I recommend keeping the temperature around 1.5 or lower with a Min P value of 0.05. This model can get carried away with prose at higher temperature. I will say though that the prose of this model is distinct from the GPT 3.5/4 variant, and lends an air of humanity to the outputs. I am aware that this model is overfit, but that was the point of the entire exercise.
If you have trouble getting the model to follow an asterisks/quote format, I recommend asterisks/plaintext instead. This model skews toward shorter outputs, so be prepared to lengthen your introduction and examples if you want longer outputs.
This model responds best to ChatML for multiturn conversations.
This model, like all other Mistral based models, is compatible with a Mistral compatible mmproj file for multimodal vision capabilities in KoboldCPP.
How to use
Install the necessary packages
pip install --upgrade autoawq autoawq-kernels
Example Python code
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Aura_v2_7B-AWQ"
system_message = "You are Aura, incarnated as a powerful AI."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - version 0.2.2 or later for support for all model types.
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code
Prompt template: ChatML
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
- Downloads last month
- 16