Flora-7B-DPO-AWQ / README.md
Suparious's picture
adding model tags
8a32978 verified
|
raw
history blame
3.56 kB
metadata
tags:
  - finetuned
  - quantized
  - 4-bit
  - AWQ
  - transformers
  - pytorch
  - mistral
  - text-generation
  - conversational
  - autotrain_compatible
  - endpoints_compatible
  - text-generation-inference
  - chatml
library_name: transformers
license: cc-by-sa-4.0
datasets:
  - mlabonne/chatml_dpo_pairs
  - ResplendentAI/Synthetic_Soul_1k
language:
  - en
model_creator: ResplendentAI
model_name: Flora-7B-DPO
model_type: mistral
pipeline_tag: text-generation
inference: false
prompt_template: |
  <|im_start|>system
  {system_message}<|im_end|>
  <|im_start|>user
  {prompt}<|im_end|>
  <|im_start|>assistant
quantized_by: Suparious

ResplendentAI/Flora-7B-DPO AWQ

image/jpeg

Model Summary

Finetuned with this DPO dataset: https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Flora-7B-DPO-AWQ"
system_message = "You are Dolphin, a helpful AI assistant."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant