Edit model card

Nous Hermes 2 - Mistral 7B - DPO

The model prior to DPO was trained on 1,000,000 instructions/chats of GPT-4 quality or better, primarily synthetic data as well as other high quality datasets, available from the repository teknium/OpenHermes-2.5.

@misc{Nous-Hermes-2-Mistral-7B-DPO, 
      url={[https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO)}, 
      title={Nous Hermes 2 Mistral 7B DPO}, 
      author={"Teknium", "theemozilla", "karan4d", "huemin_art"}
}

image/png

Model Description

Nous Hermes 2 on Mistral 7B DPO is the new flagship 7B Hermes! This model was DPO'd from Teknium/OpenHermes-2.5-Mistral-7B and has improved across the board on all benchmarks tested - AGIEval, BigBench Reasoning, GPT4All, and TruthfulQA.

The model prior to DPO was trained on 1,000,000 instructions/chats of GPT-4 quality or better, primarily synthetic data as well as other high quality datasets, available from the repository teknium/OpenHermes-2.5.

Thank you to FluidStack for sponsoring compute for this model

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Nous-Hermes-2-Mistral-7B-DPO-AWQ"
system_message = "You are Hermes, incarnated a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Downloads last month
12
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for solidrust/Nous-Hermes-2-Mistral-7B-DPO-AWQ

Quantized
(34)
this model

Dataset used to train solidrust/Nous-Hermes-2-Mistral-7B-DPO-AWQ

Collection including solidrust/Nous-Hermes-2-Mistral-7B-DPO-AWQ