distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8956
- Accuracy: {'accuracy': 0.886}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3099 | {'accuracy': 0.898} |
0.4169 | 2.0 | 500 | 0.5067 | {'accuracy': 0.869} |
0.4169 | 3.0 | 750 | 0.5110 | {'accuracy': 0.895} |
0.2113 | 4.0 | 1000 | 0.5795 | {'accuracy': 0.891} |
0.2113 | 5.0 | 1250 | 0.8179 | {'accuracy': 0.875} |
0.0677 | 6.0 | 1500 | 0.8340 | {'accuracy': 0.878} |
0.0677 | 7.0 | 1750 | 0.8819 | {'accuracy': 0.879} |
0.0289 | 8.0 | 2000 | 0.8894 | {'accuracy': 0.877} |
0.0289 | 9.0 | 2250 | 0.8759 | {'accuracy': 0.887} |
0.0047 | 10.0 | 2500 | 0.8956 | {'accuracy': 0.886} |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
Model tree for sothman/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased