import os import gradio as gr from PIL import Image import torch os.system( 'wget https://github.com/FanChiMao/CMFNet/releases/download/v0.0/dehaze_I_OHaze_CMFNet.pth -P experiments/pretrained_models') def inference(img): if not os.path.exists('test'): os.system('mkdir test') basewidth = 512 wpercent = (basewidth / float(img.size[0])) hsize = int((float(img.size[1]) * float(wpercent))) img = img.resize((basewidth, hsize), Image.BILINEAR) img.save("test/1.png", "PNG") os.system( 'python main_test_CMFNet.py --input_dir test --weights experiments/pretrained_models/dehaze_I_OHaze_CMFNet.pth') return 'results/1.png' title = "Compound Multi-branch Feature Fusion for Image Restoration (Dehaze)" description = "Gradio demo for CMFNet. CMFNet achieves competitive performance on three tasks: image deblurring, image dehazing and image deraindrop. Here, we provide a demo for image dehaze. To use it, simply upload your image, or click one of the examples to load them. Reference from: https://huggingface.co/akhaliq" article = "
Compound Multi-branch Feature Fusion for Real Image Restoration | Github Repo