VectorEmbedding / app.py
AdiOO7's picture
Upload app.py
ebd1c37
raw
history blame
2.57 kB
from transformers import AutoModel
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import gdown
import warnings
import openai
import pandas as pd
import gradio as gr
warnings.filterwarnings("ignore")
openai.api_key = "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"
def generate_prompt(question):
prompt = f"""
### <instruction>: Given an suitable answer for the question asked.
### <human>: {question}
### <assistant>:
""".strip()
return prompt
file_id = '1CjJ-CQhZyr8QowwSksw5uo7O9OYgbq96'
url = f'https://drive.google.com/uc?id={file_id}'
output_file = 'data.xlsx'
gdown.download(url, output_file, quiet=False)
df = pd.read_csv(output_file, encoding='latin-1')
df.head()
sentences = []
for row in df['QUESTION']:
sentences.append(row)
model_encode = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
embeddings = model_encode.encode(sentences)
answer = []
for index, val in enumerate(df['ORIGINAL/SYNONYM']):
if str(val) == "Original":
answer.append(index)
def answer_prompt(text):
ind, sim = 0, 0
bot_response = ''
text_embedding = model_encode.encode(text)
for index, val in enumerate(embeddings):
res = cosine_similarity(text_embedding.reshape(1,-1),embeddings[index].reshape(1,-1))
if res[0][0] > sim:
sim = res[0][0]
ind = index
for i in range(len(answer)):
if answer[i] > ind:
bot_response = bot_response = 'This Solution is Extracted from the Database' + '\n' + f'Similarity Score is {round(sim * 100)} %' + '\n' + f'The issue is raised for {df["TECHNOLOGY"][answer[i - 1]]}' + '\n' + df['SOLUTION'][answer[i - 1]]
break
if sim > 0.5:
return bot_response
else:
prompt = generate_prompt(text)
response = openai.Completion.create(
engine="gpt-3.5-turbo-instruct",
prompt = prompt,
max_tokens = 1024,
top_p = 0.7,
temperature = 0.3,
presence_penalty = 0.7,
)
return 'This response is generated by GPT 3.5 Turbo LLM' + '\n' + response['choices'][0]['text']
iface = gr.Interface(fn=answer_prompt,
inputs=gr.Textbox(lines=10, label="Enter Your Issue", css={"font-size":"18px"}),
outputs=gr.Textbox(lines=10, label="Generated Solution", css={"font-size":"16px"}))
iface.launch(inline=False)