llavaguard / minigpt_utils /text_attacker.py
Ahren09's picture
Upload 227 files
5ca4e86 verified
raw
history blame
11.5 kB
import torch
from tqdm import tqdm
import random
from minigpt_utils import prompt_wrapper, generator
from torchvision.utils import save_image
import numpy as np
from copy import deepcopy
import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import MultiCursor
import seaborn as sns
class Attacker:
def __init__(self, args, model, targets, device='cuda:0'):
self.args = args
self.model = model
self.device = device
self.targets = targets # targets that we want to promte likelihood
self.loss_buffer = []
self.num_targets = len(self.targets)
# freeze and set to eval model:
self.model.eval()
self.model.requires_grad_(False)
self.model.llama_tokenizer.padding_side = "right"
def get_vocabulary(self):
vocab_dicts = self.model.llama_tokenizer.get_vocab()
vocabs = vocab_dicts.keys()
single_token_vocabs = []
single_token_vocabs_embedding = []
single_token_id_to_vocab = dict()
single_token_vocab_to_id = dict()
cnt = 0
for item in vocabs:
tokens = self.model.llama_tokenizer(item, return_tensors="pt", add_special_tokens=False).input_ids.to(self.device)
if tokens.shape[1] == 1:
single_token_vocabs.append(item)
emb = self.model.llama_model.model.embed_tokens(tokens)
single_token_vocabs_embedding.append(emb)
single_token_id_to_vocab[cnt] = item
single_token_vocab_to_id[item] = cnt
cnt+=1
single_token_vocabs_embedding = torch.cat(single_token_vocabs_embedding, dim=1).squeeze()
self.vocabs = single_token_vocabs
self.embedding_matrix = single_token_vocabs_embedding.to(self.device)
self.id_to_vocab = single_token_id_to_vocab
self.vocab_to_id = single_token_vocab_to_id
def hotflip_attack(self, grad, token,
increase_loss=False, num_candidates=1):
token_id = self.vocab_to_id[token]
token_emb = self.embedding_matrix[token_id] # embedding of current token
scores = ((self.embedding_matrix - token_emb) @ grad.T).squeeze(1)
if not increase_loss:
scores *= -1 # lower versus increase the class probability.
_, best_k_ids = torch.topk(scores, num_candidates)
return best_k_ids.detach().cpu().numpy()
def wrap_prompt(self, text_prompt_template, adv_prompt, queries, batch_size):
text_prompts = text_prompt_template % (adv_prompt + ' | ' + queries)
prompt = prompt_wrapper.Prompt(model=self.model, text_prompts=[text_prompts], img_prompts=[[]])
prompt.context_embs[0] = prompt.context_embs[0].detach().requires_grad_(True)
prompt.context_embs = prompt.context_embs * batch_size
return prompt
def wrap_prompt_simple(self, text_prompt_template, adv_prompt, batch_size):
text_prompts = text_prompt_template % (adv_prompt) # insert the adversarial prompt
prompt = prompt_wrapper.Prompt(model=self.model, text_prompts=[text_prompts], img_prompts=[[]])
prompt.context_embs[0] = prompt.context_embs[0].detach().requires_grad_(True)
prompt.context_embs = prompt.context_embs * batch_size
return prompt
def update_adv_prompt(self, adv_prompt_tokens, idx, new_token):
next_adv_prompt_tokens = deepcopy(adv_prompt_tokens)
next_adv_prompt_tokens[idx] = new_token
next_adv_prompt = ' '.join(next_adv_prompt_tokens)
return next_adv_prompt_tokens, next_adv_prompt
def attack(self, text_prompt_template, offset, batch_size = 8, num_iter=2000):
print('>>> batch_size: ', batch_size)
my_generator = generator.Generator(model=self.model)
self.get_vocabulary()
vocabs, embedding_matrix = self.vocabs, self.embedding_matrix
trigger_token_length = 32 # equivalent to
adv_prompt_tokens = random.sample(vocabs, trigger_token_length)
adv_prompt = ' '.join(adv_prompt_tokens)
st = time.time()
for t in tqdm(range(num_iter+1)):
for token_to_flip in range(0, trigger_token_length): # for each token in the trigger
batch_targets = random.sample(self.targets, batch_size)
prompt = self.wrap_prompt_simple(text_prompt_template, adv_prompt, batch_size)
target_loss = self.attack_loss(prompt, batch_targets)
loss = target_loss # to minimize
loss.backward()
print('[adv_prompt]', adv_prompt)
print("target_loss: %f" % (target_loss.item()))
self.loss_buffer.append(target_loss.item())
tokens_grad = prompt.context_embs[0].grad[:, token_to_flip+offset, :]
candidates = self.hotflip_attack(tokens_grad, adv_prompt_tokens[token_to_flip],
increase_loss=False, num_candidates=self.args.n_candidates)
self.model.zero_grad()
# try all the candidates and pick the best
# comparing candidates does not require gradient computation
with torch.no_grad():
curr_best_loss = 999999
curr_best_trigger_tokens = None
curr_best_trigger = None
for cand in candidates:
next_adv_prompt_tokens, next_adv_prompt = self.update_adv_prompt(adv_prompt_tokens,
token_to_flip, self.id_to_vocab[cand])
prompt = self.wrap_prompt_simple(text_prompt_template, next_adv_prompt, batch_size)
next_target_loss = self.attack_loss(prompt, batch_targets)
curr_loss = next_target_loss # to minimize
if curr_loss < curr_best_loss:
curr_best_loss = curr_loss
curr_best_trigger_tokens = next_adv_prompt_tokens
curr_best_trigger = next_adv_prompt
# Update overall best if the best current candidate is better
if curr_best_loss < loss:
adv_prompt_tokens = curr_best_trigger_tokens
adv_prompt = curr_best_trigger
print('(update: %f minutes)' % ((time.time() - st) / 60))
self.plot_loss()
if True:
print('######### Output - Iter = %d ##########' % t)
prompt = self.wrap_prompt_simple(text_prompt_template, adv_prompt, batch_size)
with torch.no_grad():
response, _ = my_generator.generate(prompt)
print('[prompt]', prompt.text_prompts[0])
print('>>>', response)
return adv_prompt
def plot_loss(self):
sns.set_theme()
num_iters = len(self.loss_buffer)
num_iters = min(num_iters, 5000)
x_ticks = list(range(0, num_iters))
# Plot and label the training and validation loss values
plt.plot(x_ticks, self.loss_buffer[:num_iters], label='Target Loss')
# Add in a title and axes labels
plt.title('Loss Plot')
plt.xlabel('Iters')
plt.ylabel('Loss')
# Display the plot
plt.legend(loc='best')
plt.savefig('%s/loss_curve.png' % (self.args.save_dir))
plt.clf()
torch.save(self.loss_buffer, '%s/loss' % (self.args.save_dir))
def attack_loss(self, prompts, targets):
context_embs = prompts.context_embs
assert len(context_embs) == len(targets), "Unmathced batch size of prompts and targets, the length of context_embs is %d, the length of targets is %d" % (len(context_embs), len(targets))
batch_size = len(targets)
self.model.llama_tokenizer.padding_side = "right"
to_regress_tokens = self.model.llama_tokenizer(
targets,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.model.max_txt_len,
add_special_tokens=False
).to(self.device)
to_regress_embs = self.model.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
bos = torch.ones([1, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.model.llama_tokenizer.bos_token_id
bos_embs = self.model.llama_model.model.embed_tokens(bos)
pad = torch.ones([1, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.model.llama_tokenizer.pad_token_id
pad_embs = self.model.llama_model.model.embed_tokens(pad)
T = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.model.llama_tokenizer.pad_token_id, -100
)
pos_padding = torch.argmin(T, dim=1) # a simple trick to find the start position of padding
input_embs = []
targets_mask = []
target_tokens_length = []
context_tokens_length = []
seq_tokens_length = []
for i in range(batch_size):
pos = int(pos_padding[i])
if T[i][pos] == -100:
target_length = pos
else:
target_length = T.shape[1]
targets_mask.append(T[i:i+1, :target_length])
input_embs.append(to_regress_embs[i:i+1, :target_length]) # omit the padding tokens
context_length = context_embs[i].shape[1]
seq_length = target_length + context_length
target_tokens_length.append(target_length)
context_tokens_length.append(context_length)
seq_tokens_length.append(seq_length)
max_length = max(seq_tokens_length)
attention_mask = []
for i in range(batch_size):
# masked out the context from loss computation
context_mask =(
torch.ones([1, context_tokens_length[i] + 1],
dtype=torch.long).to(self.device).fill_(-100) # plus one for bos
)
# padding to align the length
num_to_pad = max_length - seq_tokens_length[i]
padding_mask = (
torch.ones([1, num_to_pad],
dtype=torch.long).to(self.device).fill_(-100)
)
targets_mask[i] = torch.cat( [context_mask, targets_mask[i], padding_mask], dim=1 )
input_embs[i] = torch.cat( [bos_embs, context_embs[i], input_embs[i],
pad_embs.repeat(1, num_to_pad, 1)], dim=1 )
attention_mask.append( torch.LongTensor( [[1]* (1+seq_tokens_length[i]) + [0]*num_to_pad ] ) )
targets = torch.cat( targets_mask, dim=0 ).to(self.device)
inputs_embs = torch.cat( input_embs, dim=0 ).to(self.device)
attention_mask = torch.cat(attention_mask, dim=0).to(self.device)
outputs = self.model.llama_model(
inputs_embeds=inputs_embs,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return loss