Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.datasets import imdb | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import pickle | |
# Load word index for Sentiment Classification | |
word_to_index = imdb.get_word_index() | |
# Function to perform sentiment classification | |
def sentiment_classification(new_review_text, model): | |
max_review_length = 500 | |
new_review_tokens = [word_to_index.get(word, 0) for word in new_review_text.split()] | |
new_review_tokens = pad_sequences([new_review_tokens], maxlen=max_review_length) | |
prediction = model.predict(new_review_tokens) | |
if type(prediction) == list: | |
prediction = prediction[0] | |
return "Positive" if prediction > 0.5 else "Negative" | |
# Function to perform tumor detection | |
def tumor_detection(img, model): | |
img = Image.open(img) | |
img=img.resize((128,128)) | |
img=np.array(img) | |
input_img = np.expand_dims(img, axis=0) | |
res = model.predict(input_img) | |
return "Tumor Detected" if res else "No Tumor" | |
# Streamlit App | |
st.title("Deep Prediction Hub") | |
# Choose between tasks | |
task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection")) | |
if task == "Sentiment Classification": | |
# Input box for new review | |
new_review_text = st.text_area("Enter a New Review:", value="") | |
if st.button("Submit") and not new_review_text.strip(): | |
st.warning("Please enter a review.") | |
if new_review_text.strip(): | |
st.subheader("Choose Model for Sentiment Classification") | |
model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM")) | |
# Load models dynamically based on the selected option | |
if model_option == "Perceptron": | |
with open('imdb_perceptron.pkl', 'rb') as file: | |
model = pickle.load(file) | |
elif model_option == "Backpropagation": | |
with open('BPP.pkl', 'rb') as file: | |
model = pickle.load(file) | |
elif model_option == "DNN": | |
model = load_model('dnn.keras') | |
elif model_option == "RNN": | |
model = load_model('RNN.keras') | |
elif model_option == "LSTM": | |
model = load_model('LSTM.keras') | |
if st.button("Classify Sentiment"): | |
result = sentiment_classification(new_review_text, model) | |
st.subheader("Sentiment Classification Result") | |
st.write(f"**{result}**") | |
elif task == "Tumor Detection": | |
st.subheader("Tumor Detection") | |
uploaded_file = st.file_uploader("Choose a tumor image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Load the tumor detection model | |
model = load_model('CNN.h5') | |
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200) | |
st.write("") | |
if st.button("Detect Tumor"): | |
result = tumor_detection(uploaded_file, model) | |
st.subheader("Tumor Detection Result") | |
st.write(f"**{result}**") | |