Spaces:
Running
Running
<div class="title" align=center> | |
<h1>vits-simple-api</h1> | |
<div>Simply call the vits api</div> | |
<br/> | |
<br/> | |
<p> | |
<img src="https://img.shields.io/github/license/Artrajz/vits-simple-api"> | |
<img src="https://img.shields.io/badge/python-3.9%7C3.10-green"> | |
<a href="https://hub.docker.com/r/artrajz/vits-simple-api"> | |
<img src="https://img.shields.io/docker/pulls/artrajz/vits-simple-api"></a> | |
</p> | |
<a href="https://github.com/Artrajz/vits-simple-api/blob/main/README.md">English</a>|<a href="https://github.com/Artrajz/vits-simple-api/blob/main/README_zh.md">中文文档</a> | |
<br/> | |
</div> | |
# Feature | |
- [x] VITS语音合成,语音转换 | |
- [x] HuBert-soft VITS模型 | |
- [x] W2V2 VITS / emotional-vits维度情感模型 | |
- [x] [vits_chinese](https://github.com/PlayVoice/vits_chinese) | |
- [x] [Bert-VITS2](https://github.com/Stardust-minus/Bert-VITS2) | |
- [x] 加载多模型 | |
- [x] 自动识别语言并处理,根据模型的cleaner设置语言类型识别的范围,支持自定义语言类型范围 | |
- [x] 自定义默认参数 | |
- [x] 长文本批处理 | |
- [x] GPU加速推理 | |
- [x] SSML语音合成标记语言(完善中...) | |
## demo | |
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Artrajz/vits-simple-api) | |
注意不同的id支持的语言可能有所不同。[speakers](https://artrajz-vits-simple-api.hf.space/voice/speakers) | |
- `https://artrajz-vits-simple-api.hf.space/voice/vits?text=你好,こんにちは&id=164` | |
- `https://artrajz-vits-simple-api.hf.space/voice/vits?text=我觉得1%2B1≠3&id=164&lang=zh`(get中一些字符需要转义不然会被过滤掉) | |
- `https://artrajz-vits-simple-api.hf.space/voice/vits?text=Difficult the first time, easy the second.&id=4` | |
- 激动:`https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=111` | |
- 小声:`https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=2077` | |
https://user-images.githubusercontent.com/73542220/237995061-c1f25b4e-dd86-438a-9363-4bb1fe65b425.mov | |
# 部署 | |
## Docker部署 | |
### 镜像拉取脚本 | |
``` | |
bash -c "$(wget -O- https://raw.githubusercontent.com/Artrajz/vits-simple-api/main/vits-simple-api-installer-latest.sh)" | |
``` | |
- 目前docker镜像支持的平台`linux/amd64,linux/arm64` | |
- 在拉取完成后,需要导入VITS模型才能使用,请根据以下步骤导入模型。 | |
### 下载VITS模型 | |
将模型放入`/usr/local/vits-simple-api/Model` | |
<details><summary>Folder structure</summary><pre><code> | |
│ hubert-soft-0d54a1f4.pt | |
│ model.onnx | |
│ model.yaml | |
├─g | |
│ config.json | |
│ G_953000.pth | |
│ | |
├─louise | |
│ 360_epochs.pth | |
│ config.json | |
│ | |
├─Nene_Nanami_Rong_Tang | |
│ 1374_epochs.pth | |
│ config.json | |
│ | |
├─Zero_no_tsukaima | |
│ 1158_epochs.pth | |
│ config.json | |
│ | |
└─npy | |
25ecb3f6-f968-11ed-b094-e0d4e84af078.npy | |
all_emotions.npy | |
</code></pre></details> | |
### 修改模型路径 | |
Modify in `/usr/local/vits-simple-api/config.py` | |
<details><summary>config.py</summary><pre><code> | |
# 在此填写模型路径 | |
MODEL_LIST = [ | |
# VITS | |
[ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"], | |
[ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"], | |
[ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"], | |
# HuBert-VITS (Need to configure HUBERT_SOFT_MODEL) | |
[ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"], | |
# W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY) | |
[ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"], | |
] | |
# hubert-vits: hubert soft 编码器 | |
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt" | |
# w2v2-vits: Dimensional emotion npy file | |
# 加载单独的npy: ABS_PATH+"/all_emotions.npy | |
# 加载多个npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"] | |
# 从文件夹里加载npy: ABS_PATH + "/Model/npy" | |
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy" | |
# w2v2-vits: 需要在同一路径下有model.onnx和model.yaml | |
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml" | |
</code></pre></details> | |
### 启动 | |
`docker compose up -d` | |
或者重新执行拉取脚本 | |
### 镜像更新 | |
重新执行docker镜像拉取脚本即可 | |
## 虚拟环境部署 | |
### Clone | |
`git clone https://github.com/Artrajz/vits-simple-api.git` | |
### 下载python依赖 | |
推荐使用python的虚拟环境,python版本 >= 3.9 | |
`pip install -r requirements.txt` | |
windows下可能安装不了fasttext,可以用以下命令安装,附[wheels下载地址](https://www.lfd.uci.edu/~gohlke/pythonlibs/#fasttext) | |
``` | |
#python3.10 win_amd64 | |
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp310-cp310-win_amd64.whl | |
#python3.9 win_amd64 | |
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp39-cp39-win_amd64.whl | |
``` | |
### 下载VITS模型 | |
将模型放入 `/path/to/vits-simple-api/Model` | |
<details><summary>文件夹结构</summary><pre><code> | |
├─g | |
│ config.json | |
│ G_953000.pth | |
│ | |
├─louise | |
│ 360_epochs.pth | |
│ config.json | |
│ hubert-soft-0d54a1f4.pt | |
│ | |
├─Nene_Nanami_Rong_Tang | |
│ 1374_epochs.pth | |
│ config.json | |
│ | |
└─Zero_no_tsukaima | |
1158_epochs.pth | |
config.json | |
</code></pre></details> | |
### 修改模型路径 | |
在 `/path/to/vits-simple-api/config.py` 修改 | |
<details><summary>config.py</summary><pre><code> | |
# 在此填写模型路径 | |
MODEL_LIST = [ | |
# VITS | |
[ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"], | |
[ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"], | |
[ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"], | |
# HuBert-VITS (Need to configure HUBERT_SOFT_MODEL) | |
[ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"], | |
# W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY) | |
[ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"], | |
] | |
# hubert-vits: hubert soft 编码器 | |
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt" | |
# w2v2-vits: Dimensional emotion npy file | |
# 加载单独的npy: ABS_PATH+"/all_emotions.npy | |
# 加载多个npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"] | |
# 从文件夹里加载npy: ABS_PATH + "/Model/npy" | |
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy" | |
# w2v2-vits: 需要在同一路径下有model.onnx和model.yaml | |
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml" | |
</code></pre></details> | |
### 启动 | |
`python app.py` | |
# GPU 加速 | |
## windows | |
### 安装CUDA | |
查看显卡最高支持CUDA的版本 | |
``` | |
nvidia-smi | |
``` | |
以CUDA11.7为例,[官网](https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exe_local) | |
### 安装GPU版pytorch | |
CUDA11.7对应的pytorch是用这个命令安装 | |
``` | |
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 | |
``` | |
对应版本的命令可以在[官网](https://pytorch.org/get-started/locally/)找到 | |
## Linux | |
安装过程类似,但我没有相应的环境所以没办法测试 | |
# Openjtalk安装问题 | |
如果你是arm64架构的平台,由于pypi官网上没有arm64对应的whl,可能安装会出现一些问题,你可以使用我构建的whl来安装 | |
``` | |
pip install openjtalk==0.3.0.dev2 --index-url https://pypi.artrajz.cn/simple | |
``` | |
或者是自己手动构建一个whl,可以根据[教程](https://artrajz.cn/index.php/archives/167/)来构建 | |
# API | |
## GET | |
#### speakers list | |
- GET http://127.0.0.1:23456/voice/speakers | |
返回id对应角色的映射表 | |
#### voice vits | |
- GET http://127.0.0.1:23456/voice/vits?text=text | |
其他参数不指定时均为默认值 | |
- GET http://127.0.0.1:23456/voice/vits?text=[ZH]text[ZH][JA]text[JA]&lang=mix | |
lang=mix时文本要标注 | |
- GET http://127.0.0.1:23456/voice/vits?text=text&id=142&format=wav&lang=zh&length=1.4 | |
文本为text,角色id为142,音频格式为wav,文本语言为zh,语音长度为1.4,其余参数默认 | |
#### check | |
- GET http://127.0.0.1:23456/voice/check?id=0&model=vits | |
## POST | |
- python | |
```python | |
import re | |
import requests | |
import os | |
import random | |
import string | |
from requests_toolbelt.multipart.encoder import MultipartEncoder | |
abs_path = os.path.dirname(__file__) | |
base = "http://127.0.0.1:23456" | |
# 映射表 | |
def voice_speakers(): | |
url = f"{base}/voice/speakers" | |
res = requests.post(url=url) | |
json = res.json() | |
for i in json: | |
print(i) | |
for j in json[i]: | |
print(j) | |
return json | |
# 语音合成 voice vits | |
def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50): | |
fields = { | |
"text": text, | |
"id": str(id), | |
"format": format, | |
"lang": lang, | |
"length": str(length), | |
"noise": str(noise), | |
"noisew": str(noisew), | |
"max": str(max) | |
} | |
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) | |
m = MultipartEncoder(fields=fields, boundary=boundary) | |
headers = {"Content-Type": m.content_type} | |
url = f"{base}/voice" | |
res = requests.post(url=url, data=m, headers=headers) | |
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] | |
path = f"{abs_path}/{fname}" | |
with open(path, "wb") as f: | |
f.write(res.content) | |
print(path) | |
return path | |
# 语音转换 hubert-vits | |
def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8): | |
upload_name = os.path.basename(upload_path) | |
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg | |
with open(upload_path, 'rb') as upload_file: | |
fields = { | |
"upload": (upload_name, upload_file, upload_type), | |
"id": str(id), | |
"format": format, | |
"length": str(length), | |
"noise": str(noise), | |
"noisew": str(noisew), | |
} | |
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) | |
m = MultipartEncoder(fields=fields, boundary=boundary) | |
headers = {"Content-Type": m.content_type} | |
url = f"{base}/voice/hubert-vits" | |
res = requests.post(url=url, data=m, headers=headers) | |
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] | |
path = f"{abs_path}/{fname}" | |
with open(path, "wb") as f: | |
f.write(res.content) | |
print(path) | |
return path | |
# 维度情感模型 w2v2-vits | |
def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50, emotion=0): | |
fields = { | |
"text": text, | |
"id": str(id), | |
"format": format, | |
"lang": lang, | |
"length": str(length), | |
"noise": str(noise), | |
"noisew": str(noisew), | |
"max": str(max), | |
"emotion": str(emotion) | |
} | |
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) | |
m = MultipartEncoder(fields=fields, boundary=boundary) | |
headers = {"Content-Type": m.content_type} | |
url = f"{base}/voice/w2v2-vits" | |
res = requests.post(url=url, data=m, headers=headers) | |
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] | |
path = f"{abs_path}/{fname}" | |
with open(path, "wb") as f: | |
f.write(res.content) | |
print(path) | |
return path | |
# 语音转换 同VITS模型内角色之间的音色转换 | |
def voice_conversion(upload_path, original_id, target_id): | |
upload_name = os.path.basename(upload_path) | |
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg | |
with open(upload_path, 'rb') as upload_file: | |
fields = { | |
"upload": (upload_name, upload_file, upload_type), | |
"original_id": str(original_id), | |
"target_id": str(target_id), | |
} | |
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) | |
m = MultipartEncoder(fields=fields, boundary=boundary) | |
headers = {"Content-Type": m.content_type} | |
url = f"{base}/voice/conversion" | |
res = requests.post(url=url, data=m, headers=headers) | |
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] | |
path = f"{abs_path}/{fname}" | |
with open(path, "wb") as f: | |
f.write(res.content) | |
print(path) | |
return path | |
def voice_ssml(ssml): | |
fields = { | |
"ssml": ssml, | |
} | |
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) | |
m = MultipartEncoder(fields=fields, boundary=boundary) | |
headers = {"Content-Type": m.content_type} | |
url = f"{base}/voice/ssml" | |
res = requests.post(url=url, data=m, headers=headers) | |
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] | |
path = f"{abs_path}/{fname}" | |
with open(path, "wb") as f: | |
f.write(res.content) | |
print(path) | |
return path | |
def voice_dimensional_emotion(upload_path): | |
upload_name = os.path.basename(upload_path) | |
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg | |
with open(upload_path, 'rb') as upload_file: | |
fields = { | |
"upload": (upload_name, upload_file, upload_type), | |
} | |
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) | |
m = MultipartEncoder(fields=fields, boundary=boundary) | |
headers = {"Content-Type": m.content_type} | |
url = f"{base}/voice/dimension-emotion" | |
res = requests.post(url=url, data=m, headers=headers) | |
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] | |
path = f"{abs_path}/{fname}" | |
with open(path, "wb") as f: | |
f.write(res.content) | |
print(path) | |
return path | |
``` | |
## API KEY | |
在config.py中设置`API_KEY_ENABLED = True`以启用,api key填写:`API_KEY = "api-key"`。 | |
启用后,GET请求中使用需要增加参数api_key,POST请求中使用需要在header中添加参数`X-API-KEY`。 | |
# Parameter | |
## VITS语音合成 | |
| Name | Parameter | Is must | Default | Type | Instruction | | |
| ------------- | --------- | ------- | ------------------- | ----- | ------------------------------------------------------------ | | |
| 合成文本 | text | true | | str | 需要合成语音的文本。 | | |
| 角色id | id | false | 从`config.py`中获取 | int | 即说话人id。 | | |
| 音频格式 | format | false | 从`config.py`中获取 | str | 支持wav,ogg,silk,mp3,flac | | |
| 文本语言 | lang | false | 从`config.py`中获取 | str | auto为自动识别语言模式,也是默认模式。lang=mix时,文本应该用[ZH] 或 [JA] 包裹。方言无法自动识别。 | | |
| 语音长度/语速 | length | false | 从`config.py`中获取 | float | 调节语音长度,相当于调节语速,该数值越大语速越慢。 | | |
| 噪声 | noise | false | 从`config.py`中获取 | float | 样本噪声,控制合成的随机性。 | | |
| sdp噪声 | noisew | false | 从`config.py`中获取 | float | 随机时长预测器噪声,控制音素发音长度。 | | |
| 分段阈值 | max | false | 从`config.py`中获取 | int | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 | | |
| 流式响应 | streaming | false | false | bool | 流式合成语音,更快的首包响应。 | | |
## VITS 语音转换 | |
| Name | Parameter | Is must | Default | Type | Instruction | | |
| ---------- | ----------- | ------- | ------- | ---- | ---------------------- | | |
| 上传音频 | upload | true | | file | wav or ogg | | |
| 源角色id | original_id | true | | int | 上传文件所使用的角色id | | |
| 目标角色id | target_id | true | | int | 要转换的目标角色id | | |
## HuBert-VITS 语音转换 | |
| Name | Parameter | Is must | Default | Type | Instruction | | |
| ------------- | --------- | ------- | ------- | ----- | ------------------------------------------------ | | |
| 上传音频 | upload | true | | file | 需要转换说话人的音频文件。 | | |
| 目标角色id | id | true | | int | 目标说话人id。 | | |
| 音频格式 | format | true | | str | wav,ogg,silk | | |
| 语音长度/语速 | length | true | | float | 调节语音长度,相当于调节语速,该数值越大语速越慢 | | |
| 噪声 | noise | true | | float | 样本噪声,控制合成的随机性。 | | |
| sdp噪声 | noisew | true | | float | 随机时长预测器噪声,控制音素发音长度。 | | |
## W2V2-VITS | |
| Name | Parameter | Is must | Default | Type | Instruction | | |
| ------------- | --------- | ------- | ------------------- | ----- | ------------------------------------------------------------ | | |
| 合成文本 | text | true | | str | 需要合成语音的文本。 | | |
| 角色id | id | false | 从`config.py`中获取 | int | 即说话人id。 | | |
| 音频格式 | format | false | 从`config.py`中获取 | str | 支持wav,ogg,silk,mp3,flac | | |
| 文本语言 | lang | false | 从`config.py`中获取 | str | auto为自动识别语言模式,也是默认模式。lang=mix时,文本应该用[ZH] 或 [JA] 包裹。方言无法自动识别。 | | |
| 语音长度/语速 | length | false | 从`config.py`中获取 | float | 调节语音长度,相当于调节语速,该数值越大语速越慢 | | |
| 噪声 | noise | false | 从`config.py`中获取 | float | 样本噪声,控制合成的随机性。 | | |
| sdp噪声 | noisew | false | 从`config.py`中获取 | float | 随机时长预测器噪声,控制音素发音长度。 | | |
| 分段阈值 | max | false | 从`config.py`中获取 | int | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 | | |
| 维度情感 | emotion | false | 0 | int | 范围取决于npy情感参考文件,如[innnky](https://huggingface.co/spaces/innnky/nene-emotion/tree/main)的all_emotions.npy模型范围是0-5457 | | |
## Dimensional emotion | |
| Name | Parameter | Is must | Default | Type | Instruction | | |
| -------- | --------- | ------- | ------- | ---- | ----------------------------- | | |
| 上传音频 | upload | true | | file | 返回存储维度情感向量的npy文件 | | |
## Bert-VITS2语音合成 | |
| Name | Parameter | Is must | Default | Type | Instruction | | |
| ------------- | --------- | ------- | ------------------- | ----- | ------------------------------------------------------------ | | |
| 合成文本 | text | true | | str | 需要合成语音的文本。 | | |
| 角色id | id | false | 从`config.py`中获取 | int | 即说话人id。 | | |
| 音频格式 | format | false | 从`config.py`中获取 | str | 支持wav,ogg,silk,mp3,flac | | |
| 文本语言 | lang | false | 从`config.py`中获取 | str | 目前只有中文。 | | |
| 语音长度/语速 | length | false | 从`config.py`中获取 | float | 调节语音长度,相当于调节语速,该数值越大语速越慢。 | | |
| 噪声 | noise | false | 从`config.py`中获取 | float | 样本噪声,控制合成的随机性。 | | |
| sdp噪声 | noisew | false | 从`config.py`中获取 | float | 随机时长预测器噪声,控制音素发音长度。 | | |
| 分段阈值 | max | false | 从`config.py`中获取 | int | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 | | |
| SDP/DP混合比 | sdp_ratio | false | 从`config.py`中获取 | int | SDP在合成时的占比,理论上此比率越高,合成的语音语调方差越大。 | | |
## SSML语音合成标记语言 | |
目前支持的元素与属性 | |
`speak`元素 | |
| Attribute | Description | Is must | | |
| --------- | ------------------------------------------------------------ | ------- | | |
| id | 默认值从`config.py`中读取 | false | | |
| lang | 默认值从`config.py`中读取 | false | | |
| length | 默认值从`config.py`中读取 | false | | |
| noise | 默认值从`config.py`中读取 | false | | |
| noisew | 默认值从`config.py`中读取 | false | | |
| max | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段,这里默认为0。 | false | | |
| model | 默认为vits,可选`w2v2-vits`,`emotion-vits` | false | | |
| emotion | 只有用`w2v2-vits`或`emotion-vits`时`emotion`才生效,范围取决于npy情感参考文件 | false | | |
`voice`元素 | |
优先级大于`speak` | |
| Attribute | Description | Is must | | |
| --------- | ------------------------------------------------------------ | ------- | | |
| id | 默认值从`config.py`中读取 | false | | |
| lang | 默认值从`config.py`中读取 | false | | |
| length | 默认值从`config.py`中读取 | false | | |
| noise | 默认值从`config.py`中读取 | false | | |
| noisew | 默认值从`config.py`中读取 | false | | |
| max | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段,这里默认为0。 | false | | |
| model | 默认为vits,可选`w2v2-vits`,`emotion-vits` | false | | |
| emotion | 只有用`w2v2-vits`或`emotion-vits`时`emotion`才会生效 | false | | |
`break`元素 | |
| Attribute | Description | Is must | | |
| --------- | ------------------------------------------------------------ | ------- | | |
| strength | x-weak,weak,medium(默认值),strong,x-strong | false | | |
| time | 暂停的绝对持续时间,以秒为单位(例如 `2s`)或以毫秒为单位(例如 `500ms`)。 有效值的范围为 0 到 5000 毫秒。 如果设置的值大于支持的最大值,则服务将使用 `5000ms`。 如果设置了 `time` 属性,则会忽略 `strength` 属性。 | false | | |
| Strength | Relative Duration | | |
| :------- | :---------------- | | |
| x-weak | 250 毫秒 | | |
| weak | 500 毫秒 | | |
| Medium | 750 毫秒 | | |
| Strong | 1000 毫秒 | | |
| x-strong | 1250 毫秒 | | |
示例 | |
```xml | |
<speak lang="zh" format="mp3" length="1.2"> | |
<voice id="92" >这几天心里颇不宁静。</voice> | |
<voice id="125">今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。</voice> | |
<voice id="142">月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;</voice> | |
<voice id="98">妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。</voice> | |
<voice id="120">我悄悄地披了大衫,带上门出去。</voice><break time="2s"/> | |
<voice id="121">沿着荷塘,是一条曲折的小煤屑路。</voice> | |
<voice id="122">这是一条幽僻的路;白天也少人走,夜晚更加寂寞。</voice> | |
<voice id="123">荷塘四面,长着许多树,蓊蓊郁郁的。</voice> | |
<voice id="124">路的一旁,是些杨柳,和一些不知道名字的树。</voice> | |
<voice id="125">没有月光的晚上,这路上阴森森的,有些怕人。</voice> | |
<voice id="126">今晚却很好,虽然月光也还是淡淡的。</voice><break time="2s"/> | |
<voice id="127">路上只我一个人,背着手踱着。</voice> | |
<voice id="128">这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。</voice> | |
<voice id="129">我爱热闹,也爱冷静;<break strength="x-weak"/>爱群居,也爱独处。</voice> | |
<voice id="130">像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。</voice> | |
<voice id="131">白天里一定要做的事,一定要说的话,现在都可不理。</voice> | |
<voice id="132">这是独处的妙处,我且受用这无边的荷香月色好了。</voice> | |
</speak> | |
``` | |
# 交流平台 | |
现在只有 [Q群](https://qm.qq.com/cgi-bin/qm/qr?k=-1GknIe4uXrkmbDKBGKa1aAUteq40qs_&jump_from=webapi&authKey=x5YYt6Dggs1ZqWxvZqvj3fV8VUnxRyXm5S5Kzntc78+Nv3iXOIawplGip9LWuNR/) | |
# 鸣谢 | |
- vits:https://github.com/jaywalnut310/vits | |
- MoeGoe:https://github.com/CjangCjengh/MoeGoe | |
- emotional-vits:https://github.com/innnky/emotional-vits | |
- vits-uma-genshin-honkai:https://huggingface.co/spaces/zomehwh/vits-uma-genshin-honkai | |
- vits_chinese:https://github.com/PlayVoice/vits_chinese | |