Artrajz's picture
update
b0f5083
raw
history blame
11.4 kB
import librosa
import re
import numpy as np
import torch
from torch import no_grad, LongTensor, inference_mode, FloatTensor
import utils
from contants import ModelType
from utils import get_hparams_from_file, lang_dict
from utils.sentence import sentence_split_and_markup
from vits import commons
from vits.mel_processing import spectrogram_torch
from vits.text import text_to_sequence
from vits.models import SynthesizerTrn
class VITS:
def __init__(self, model, config, additional_model=None, model_type=None, device=torch.device("cpu"), **kwargs):
self.model_type = model_type
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
self.n_symbols = len(getattr(self.hps_ms, 'symbols', []))
self.speakers = getattr(self.hps_ms, 'speakers', ['0'])
if not isinstance(self.speakers, list):
self.speakers = [item[0] for item in sorted(list(self.speakers.items()), key=lambda x: x[1])]
self.use_f0 = getattr(self.hps_ms.data, 'use_f0', False)
self.emotion_embedding = getattr(self.hps_ms.data, 'emotion_embedding',
getattr(self.hps_ms.model, 'emotion_embedding', False))
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding',
getattr(self.hps_ms.model, 'bert_embedding', False))
self.hps_ms.model.emotion_embedding = self.emotion_embedding
self.hps_ms.model.bert_embedding = self.bert_embedding
self.net_g_ms = SynthesizerTrn(
self.n_symbols,
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.n_speakers,
**self.hps_ms.model)
_ = self.net_g_ms.eval()
self.device = device
key = getattr(self.hps_ms.data, "text_cleaners", ["none"])[0]
self.lang = lang_dict.get(key, ["unknown"])
# load model
self.load_model(model, additional_model)
def load_model(self, model, additional_model=None):
utils.load_checkpoint(model, self.net_g_ms)
self.net_g_ms.to(self.device)
if self.model_type == ModelType.HUBERT_VITS:
self.hubert = additional_model
elif self.model_type == ModelType.W2V2_VITS:
self.emotion_reference = additional_model
def get_cleaned_text(self, text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
if self.bert_embedding:
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners,
bert_embedding=self.bert_embedding)
text_norm = LongTensor(text_norm)
return text_norm, char_embed
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def get_cleaner(self):
return getattr(self.hps_ms.data, 'text_cleaners', [None])[0]
def get_speakers(self, escape=False):
return self.speakers
@property
def sampling_rate(self):
return self.hps_ms.data.sampling_rate
def infer(self, params):
with no_grad():
x_tst = params.get("stn_tst").unsqueeze(0).to(self.device)
x_tst_lengths = LongTensor([params.get("stn_tst").size(0)]).to(self.device)
x_tst_prosody = torch.FloatTensor(params.get("char_embeds")).unsqueeze(0).to(
self.device) if self.bert_embedding else None
sid = params.get("sid").to(self.device)
emotion = params.get("emotion").to(self.device) if self.emotion_embedding else None
audio = self.net_g_ms.infer(x=x_tst,
x_lengths=x_tst_lengths,
sid=sid,
noise_scale=params.get("noise_scale"),
noise_scale_w=params.get("noise_scale_w"),
length_scale=params.get("length_scale"),
emotion_embedding=emotion,
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy()
torch.cuda.empty_cache()
return audio
def get_infer_param(self, length_scale, noise_scale, noise_scale_w, text=None, speaker_id=None, audio_path=None,
emotion=None, cleaned=False, f0_scale=1):
emo = None
char_embeds = None
if self.model_type != ModelType.HUBERT_VITS:
if self.bert_embedding:
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
else:
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
sid = LongTensor([speaker_id])
if self.model_type == ModelType.W2V2_VITS:
# if emotion_reference.endswith('.npy'):
# emotion = np.load(emotion_reference)
# emotion = FloatTensor(emotion).unsqueeze(0)
# else:
# audio16000, sampling_rate = librosa.load(
# emotion_reference, sr=16000, mono=True)
# emotion = self.w2v2(audio16000, sampling_rate)[
# 'hidden_states']
# emotion_reference = re.sub(
# r'\..*$', '', emotion_reference)
# np.save(emotion_reference, emotion.squeeze(0))
# emotion = FloatTensor(emotion)
emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0)
elif self.model_type == ModelType.HUBERT_VITS:
if self.use_f0:
audio, sampling_rate = librosa.load(audio_path, sr=self.hps_ms.data.sampling_rate, mono=True)
audio16000 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
else:
audio16000, sampling_rate = librosa.load(audio_path, sr=16000, mono=True)
with inference_mode():
units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy()
if self.use_f0:
f0 = librosa.pyin(audio,
sr=sampling_rate,
fmin=librosa.note_to_hz('C0'),
fmax=librosa.note_to_hz('C7'),
frame_length=1780)[0]
target_length = len(units[:, 0])
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length,
np.arange(0, len(f0)), f0)) * f0_scale
units[:, 0] = f0 / 10
stn_tst = FloatTensor(units)
sid = LongTensor([speaker_id])
params = {"length_scale": length_scale, "noise_scale": noise_scale,
"noise_scale_w": noise_scale_w, "stn_tst": stn_tst,
"sid": sid, "emotion": emo, "char_embeds": char_embeds}
return params
def get_tasks(self, voice):
text = voice.get("text", None)
speaker_id = voice.get("id", 0)
length = voice.get("length", 1)
noise = voice.get("noise", 0.667)
noisew = voice.get("noisew", 0.8)
max = voice.get("max", 50)
lang = voice.get("lang", "auto")
speaker_lang = voice.get("speaker_lang", None)
audio_path = voice.get("audio_path", None)
emotion = voice.get("emotion", 0)
# 去除所有多余的空白字符
if text is not None: text = re.sub(r'\s+', ' ', text).strip()
tasks = []
if self.model_type == ModelType.VITS:
sentence_list = sentence_split_and_markup(text, max, lang, speaker_lang)
for sentence in sentence_list:
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
noise_scale=noise, noise_scale_w=noisew)
tasks.append(params)
elif self.model_type == ModelType.HUBERT_VITS:
params = self.get_infer_param(speaker_id=speaker_id, length_scale=length, noise_scale=noise,
noise_scale_w=noisew, audio_path=audio_path)
tasks.append(params)
elif self.model_type == ModelType.W2V2_VITS:
sentence_list = sentence_split_and_markup(text, max, lang, speaker_lang)
for sentence in sentence_list:
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
noise_scale=noise, noise_scale_w=noisew, emotion=emotion)
tasks.append(params)
else:
raise ValueError(f"Unsupported model type: {self.model_type}")
return tasks
def get_audio(self, voice, auto_break=False):
tasks = self.get_tasks(voice)
# 停顿0.75s,避免语音分段合成再拼接后的连接突兀
brk = np.zeros(int(0.75 * self.sampling_rate), dtype=np.int16)
audios = []
num_tasks = len(tasks)
for i, task in enumerate(tasks):
if auto_break and i < num_tasks - 1:
chunk = np.concatenate((self.infer(task), brk), axis=0)
else:
chunk = self.infer(task)
audios.append(chunk)
audio = np.concatenate(audios, axis=0)
return audio
def get_stream_audio(self, voice, auto_break=False):
tasks = self.get_tasks(voice)
brk = np.zeros(int(0.75 * 22050), dtype=np.int16)
for task in tasks:
if auto_break:
chunk = np.concatenate((self.infer(task), brk), axis=0)
else:
chunk = self.infer(task)
yield chunk
def voice_conversion(self, voice):
audio_path = voice.get("audio_path")
original_id = voice.get("original_id")
target_id = voice.get("target_id")
audio = utils.load_audio_to_torch(
audio_path, self.hps_ms.data.sampling_rate)
y = audio.unsqueeze(0)
spec = spectrogram_torch(y, self.hps_ms.data.filter_length,
self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length,
self.hps_ms.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([original_id])
with no_grad():
sid_tgt = LongTensor([target_id])
audio = self.net_g_ms.voice_conversion(spec.to(self.device),
spec_lengths.to(self.device),
sid_src=sid_src.to(self.device),
sid_tgt=sid_tgt.to(self.device))[0][0, 0].data.cpu().float().numpy()
torch.cuda.empty_cache()
return audio