|
import os |
|
import streamlit as st |
|
from dotenv import load_dotenv |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import llamacpp |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler |
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain |
|
from langchain.document_loaders import TextLoader |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory |
|
from langchain.prompts import PromptTemplate |
|
from langchain.vectorstores import Chroma |
|
from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma |
|
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders.directory import DirectoryLoader |
|
from HTML_templates import css, bot_template, user_template |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain import hub |
|
from langchain.retrievers import ContextualCompressionRetriever |
|
from langchain.retrievers.document_compressors import LLMChainExtractor |
|
|
|
lang_api_key = os.getenv("lang_api_key") |
|
|
|
os.environ["LANGCHAIN_TRACING_V2"] = "true" |
|
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" |
|
os.environ["LANGCHAIN_API_KEY"] = lang_api_key |
|
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_Law_RAG_QA" |
|
|
|
|
|
|
|
def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=250, chunk_overlap=20): |
|
|
|
model_name = "Alibaba-NLP/gte-base-en-v1.5" |
|
model_kwargs = {'device': 'cpu', |
|
"trust_remote_code" : 'True'} |
|
encode_kwargs = {'normalize_embeddings': True} |
|
embeddings = HuggingFaceEmbeddings( |
|
model_name=model_name, |
|
model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader) |
|
docs = loader.load() |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
split_docs = text_splitter.split_documents(docs) |
|
|
|
|
|
|
|
|
|
vectorstore = Chroma.from_documents( |
|
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path |
|
) |
|
|
|
|
|
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k}) |
|
|
|
|
|
|
|
return retriever |
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="Lithuanian law documents RAG QA BOT ", |
|
page_icon=":books:") |
|
st.write(css, unsafe_allow_html=True) |
|
|
|
|
|
st.header("Chat with multiple PDFs :books:") |
|
st.markdown("Hi, I am Qwen, chat mmodel, based on respublic of Lithuania law document. Write you question and press enter to start chat.") |
|
|
|
if "messages" not in st.session_state: |
|
st.session_state["messages"] = [ |
|
{"role": "assistant", "content": "Hi, I'm a chatbot who is based on respublic of Lithuania law documents. How can I help you?"} |
|
] |
|
|
|
|
|
|
|
retriever = create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=12, chunk_size=300, chunk_overlap=20) |
|
if user_question := st.text_input("Ask a question about your documents:"): |
|
handle_userinput(user_question,retriever) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def handle_userinput(user_question,retriever): |
|
st.session_state.messages.append({"role": "user", "content": user_question}) |
|
st.chat_message("user").write(user_question) |
|
docs = retriever.invoke(user_question) |
|
|
|
with st.sidebar: |
|
st.subheader("Your documents") |
|
with st.spinner("Processing"): |
|
for doc in docs: |
|
st.write(f"Document: {doc}") |
|
|
|
doc_txt = [doc.page_content for doc in docs] |
|
|
|
rag_chain = create_conversational_rag_chain(retriever) |
|
response = rag_chain.invoke({"context": doc_txt, "question": user_question}) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
st.chat_message("assistant").write(response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_conversational_rag_chain(retriever): |
|
|
|
|
|
|
|
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) |
|
|
|
llm = llamacpp.LlamaCpp( |
|
model_path = "qwen2-0_5b-instruct-q8_0.gguf", |
|
n_gpu_layers=0, |
|
temperature=0.2, |
|
top_p=0.9, |
|
n_ctx=22000, |
|
n_batch=2000, |
|
max_tokens=200, |
|
repeat_penalty=1.7, |
|
last_n_tokens_size = 200, |
|
|
|
verbose=False, |
|
) |
|
|
|
prompt = hub.pull("rlm/rag-prompt") |
|
|
|
rag_chain = prompt | llm | StrOutputParser() |
|
|
|
|
|
return rag_chain |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |