File size: 2,963 Bytes
5dbc4ea 5b74a4b 5dbc4ea 83e3ccb ea3653e 5b74a4b 5dbc4ea 25fb027 a927d1d ea3653e c5fae6e 25ac55d 5add931 3077d90 de1b6c1 3077d90 5dbc4ea 3077d90 5dbc4ea 5add931 72632b9 25fb027 2de6d50 25fb027 d159f8d 1d76ff7 25fb027 c58bd88 8c23bfa 25fb027 17cfe18 25fb027 a5ec736 b2c7d3a 5b74a4b ef4cfee 8fe6fd5 5b74a4b b2c7d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import torch # Add this line
import gradio as gr
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, pipeline, AutoTokenizer
import numpy as np
import librosa
# Load the models and processors
asr_model = Wav2Vec2ForCTC.from_pretrained("Akashpb13/Hausa_xlsr")
asr_processor = Wav2Vec2Processor.from_pretrained("Akashpb13/Hausa_xlsr")
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
def translate_speech(audio_input):
# Load the audio file as a floating point time series
audio_data, sample_rate = librosa.load(audio_input, sr=16000)
# Prepare the input dictionary
input_dict = asr_processor(audio_data, sampling_rate=sample_rate, return_tensors="pt", padding=True)
# Use the ASR model to get the logits
logits = asr_model(input_dict.input_values.to("cpu")).logits
# Get the predicted IDs
pred_ids = torch.argmax(logits, dim=-1)[0]
# Decode the predicted IDs to get the transcription
transcription = asr_processor.decode(pred_ids)
print(f"Transcription: {transcription}") # Print the transcription
# Use the translation pipeline to translate the transcription
translated_text = translator(transcription, return_tensors="pt")
print(f"Translated text: {translated_text}") # Print the translated text
# Check if the translated text contains 'generated_token_ids'
if 'generated_token_ids' in translated_text[0]:
# Decode the tokens into text
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
# Remove padding tokens
translated_text_str = translated_text_str.replace("<pad>", "").strip()
print(f"Translated text string: {translated_text_str}") # Print the translated text string
else:
print("The translated text does not contain 'generated_token_ids'")
return
# Use the text-to-speech pipeline to synthesize the translated text
synthesised_speech = tts(translated_text_str)
# Check if the synthesised speech contains 'audio'
if 'audio' in synthesised_speech:
synthesised_speech_data = synthesised_speech['audio']
else:
print("The synthesised speech does not contain 'audio'")
return
# Flatten the audio data
synthesised_speech_data = synthesised_speech_data.flatten()
# Scale the audio data to the range of int16 format
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)
return 16000, synthesised_speech
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.Audio(type="filepath"), # Change this line
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()
|