ha-en / app.py
Baghdad99's picture
Update app.py
12baf3c
raw
history blame
2.1 kB
import gradio as gr
import requests
import numpy as np
from pydub import AudioSegment
import io
# Define the Hugging Face Inference API URLs and headers
TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts"
TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text"
headers = {"Authorization": "Bearer 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"}
# Load the Gradio model for speech recognition
asr_model = gr.load("models/Baghdad99/saad-speech-recognition-hausa-audio-to-text")
# Define the function to query the Hugging Face Inference API
def query(api_url, payload):
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
# Define the function to translate speech
def translate_speech(audio_file):
print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line
# Use the ASR model to transcribe the audio
transcription = asr_model.predict(audio_file.name) # Change this line
# Use the translation pipeline to translate the transcription
translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})
# Use the TTS pipeline to synthesize the translated text
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
audio_bytes = response.content
# Convert the audio bytes to an audio segment
audio_segment = AudioSegment.from_mp3(io.BytesIO(audio_bytes)) # Change this line
# Convert the audio segment to a numpy array
audio_data = np.array(audio_segment.get_array_of_samples())
if audio_segment.channels == 2:
audio_data = audio_data.reshape((-1, 2))
return audio_data
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.File(type="file"), # Change this line
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()