ha-en / app.py
Baghdad99's picture
Update app.py
a927d1d
raw
history blame
3.52 kB
import gradio as gr
import requests
import numpy as np
from pydub import AudioSegment
import io
from IPython.display import Audio
# Define the Hugging Face Inference API URLs and headers
ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text"
TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts"
TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text"
headers = {"Authorization": "Bearer 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"}
# Define the function to query the Hugging Face Inference API
def query(api_url, payload=None, data=None):
if data is not None:
response = requests.post(api_url, headers=headers, data=data)
else:
response = requests.post(api_url, headers=headers, json=payload)
response_json = response.json()
if 'error' in response_json:
print(f"Error in query function: {response_json['error']}")
return None
return response_json
# Define the function to translate speech
def translate_speech(audio_file):
print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line
# Use the ASR pipeline to transcribe the audio
data = audio_file.read()
output = query(ASR_API_URL, data=data)
print(f"Output: {output}") # Debug line
# Check if 'error' key exists in the output
if 'error' in output:
print(f"Error: {output['error']}")
estimated_time = output.get('estimated_time')
if estimated_time:
print(f"Estimated time for the model to load: {estimated_time} seconds")
return
# Check if 'text' key exists in the output
if 'text' in output:
transcription = output["text"]
else:
print("Key 'text' does not exist in the output.")
return
# Use the translation pipeline to translate the transcription
translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})
# Use the TTS pipeline to synthesize the translated text
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
audio_bytes = response.content
# Display the audio output
return Audio(audio_bytes)
# print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line
# # Use the ASR pipeline to transcribe the audio
# data = audio_file.read()
# output = query(ASR_API_URL, data=data)
# print(f"Output: {output}") # Debug line
# # Check if 'text' key exists in the output
# if 'text' in output:
# transcription = output["text"]
# else:
# print("Key 'text' does not exist in the output.")
# return
# # Use the translation pipeline to translate the transcription
# translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})
# # Use the TTS pipeline to synthesize the translated text
# response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
# audio_bytes = response.content
# # Display the audio output
# return Audio(audio_bytes)
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.File(type="file"), # Change this line
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()