Aldi / Model_Result_Overview.py
BlendMMM's picture
Update Model_Result_Overview.py
22546f6 verified
'''
MMO Build Sprint 3
additions : contributions calculated using tuned Mixed LM model
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
MMO Build Sprint 4
additions : response metrics selection
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
'''
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
from utilities import load_authenticator
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def process_train_and_test(train, test, features, panel_col, target_col):
X1 = train[features]
ss = MinMaxScaler()
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
X1[panel_col] = train[panel_col]
X1[target_col] = train[target_col]
if test is not None:
X2 = test[features]
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
X2[panel_col] = test[panel_col]
X2[target_col] = test[target_col]
return X1, X2
return X1
def mdf_predict(X_df, mdf, random_eff_df) :
X=X_df.copy()
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
X['pred_fixed_effect'] = mdf.predict(X)
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
X.to_csv('Test/merged_df_contri.csv',index=False)
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
return X
target_col='Revenue'
target='Revenue'
# is_panel=False
# is_panel = st.session_state['is_panel']
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col='Panel'
date_col = 'date'
#st.write(media_data)
is_panel = True
# panel_col='markets'
date_col = 'date'
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state['authentication_status']
if auth_status:
authenticator.logout('Logout', 'main')
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
def panel_fetch(file_selected):
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
if "Panel" in raw_data_mmm_df.columns:
panel = list(set(raw_data_mmm_df["Panel"]))
else:
raw_data_mmm_df = None
panel = None
return panel
def rerun():
st.rerun()
metrics_selected='revenue'
file_selected = (
f"Overview_data_test_panel@#revenue.xlsx"
)
panel_list = panel_fetch(file_selected)
if "selected_markets" not in st.session_state:
st.session_state['selected_markets']='DMA1'
st.header('Overview of previous spends')
selected_market= st.selectbox(
"Select Markets",
["Total Market"] + panel_list
)
initialize_data(target_col,selected_market)
scenario = st.session_state['scenario']
raw_df = st.session_state['raw_df']
# st.write(scenario.actual_total_spends)
# st.write(scenario.actual_total_sales)
columns = st.columns((1,1,3))
with columns[0]:
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
###print(f"##################### {scenario.actual_total_sales} ##################")
with columns[1]:
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales)))
actual_summary_df = create_channel_summary(scenario)
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
columns = st.columns((2,1))
#with columns[0]:
with st.expander('Channel wise overview'):
st.markdown(actual_summary_df.style.set_table_styles(
[{
'selector': 'th',
'props': [('background-color', '#FFFFF')]
},
{
'selector' : 'tr:nth-child(even)',
'props' : [('background-color', '#FFFFF')]
}]).to_html(), unsafe_allow_html=True)
st.markdown("<hr>",unsafe_allow_html=True)
##############################
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
################################3
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
#######################################
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
selected_channel = scenario.channels.get(selected_channel_name,None)
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
# elif auth_status == False:
# st.error('Username/Password is incorrect')
# if auth_status != True:
# try:
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# if username_forgot_pw:
# st.success('New password sent securely')
# # Random password to be transferred to user securely
# elif username_forgot_pw == False:
# st.error('Username not found')
# except Exception as e:
# st.error(e)