|
''' |
|
MMO Build Sprint 3 |
|
additions : contributions calculated using tuned Mixed LM model |
|
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model |
|
|
|
MMO Build Sprint 4 |
|
additions : response metrics selection |
|
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model |
|
''' |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
from sklearn.preprocessing import MinMaxScaler |
|
import pickle |
|
|
|
from utilities import load_authenticator |
|
|
|
from utilities_with_panel import (set_header, |
|
overview_test_data_prep_panel, |
|
overview_test_data_prep_nonpanel, |
|
initialize_data, |
|
load_local_css, |
|
create_channel_summary, |
|
create_contribution_pie, |
|
create_contribuion_stacked_plot, |
|
create_channel_spends_sales_plot, |
|
format_numbers, |
|
channel_name_formating) |
|
|
|
import plotly.graph_objects as go |
|
import streamlit_authenticator as stauth |
|
import yaml |
|
from yaml import SafeLoader |
|
import time |
|
|
|
st.set_page_config(layout='wide') |
|
load_local_css('styles.css') |
|
set_header() |
|
|
|
|
|
def get_random_effects(media_data, panel_col, mdf): |
|
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) |
|
|
|
for i, market in enumerate(media_data[panel_col].unique()): |
|
print(i, end='\r') |
|
intercept = mdf.random_effects[market].values[0] |
|
random_eff_df.loc[i, 'random_effect'] = intercept |
|
random_eff_df.loc[i, panel_col] = market |
|
|
|
return random_eff_df |
|
|
|
|
|
def process_train_and_test(train, test, features, panel_col, target_col): |
|
X1 = train[features] |
|
|
|
ss = MinMaxScaler() |
|
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) |
|
|
|
X1[panel_col] = train[panel_col] |
|
X1[target_col] = train[target_col] |
|
|
|
if test is not None: |
|
X2 = test[features] |
|
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) |
|
X2[panel_col] = test[panel_col] |
|
X2[target_col] = test[target_col] |
|
return X1, X2 |
|
return X1 |
|
|
|
def mdf_predict(X_df, mdf, random_eff_df) : |
|
X=X_df.copy() |
|
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left') |
|
X['pred_fixed_effect'] = mdf.predict(X) |
|
|
|
X['pred'] = X['pred_fixed_effect'] + X['random_effect'] |
|
X.to_csv('Test/merged_df_contri.csv',index=False) |
|
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True) |
|
|
|
return X |
|
|
|
|
|
target_col='Revenue' |
|
target='Revenue' |
|
|
|
|
|
|
|
|
|
panel_col='Panel' |
|
date_col = 'date' |
|
|
|
|
|
|
|
is_panel = True |
|
|
|
|
|
date_col = 'date' |
|
for k, v in st.session_state.items(): |
|
|
|
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): |
|
st.session_state[k] = v |
|
|
|
authenticator = st.session_state.get('authenticator') |
|
|
|
if authenticator is None: |
|
authenticator = load_authenticator() |
|
|
|
name, authentication_status, username = authenticator.login('Login', 'main') |
|
auth_status = st.session_state['authentication_status'] |
|
|
|
if auth_status: |
|
authenticator.logout('Logout', 'main') |
|
|
|
is_state_initiaized = st.session_state.get('initialized',False) |
|
if not is_state_initiaized: |
|
a=1 |
|
|
|
def panel_fetch(file_selected): |
|
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM") |
|
|
|
if "Panel" in raw_data_mmm_df.columns: |
|
panel = list(set(raw_data_mmm_df["Panel"])) |
|
else: |
|
raw_data_mmm_df = None |
|
panel = None |
|
|
|
return panel |
|
|
|
def rerun(): |
|
st.rerun() |
|
|
|
metrics_selected='revenue' |
|
|
|
file_selected = ( |
|
f"Overview_data_test_panel@#revenue.xlsx" |
|
) |
|
panel_list = panel_fetch(file_selected) |
|
|
|
if "selected_markets" not in st.session_state: |
|
st.session_state['selected_markets']='DMA1' |
|
|
|
|
|
st.header('Overview of previous spends') |
|
|
|
selected_market= st.selectbox( |
|
"Select Markets", |
|
["Total Market"] + panel_list |
|
) |
|
|
|
|
|
|
|
initialize_data(target_col,selected_market) |
|
scenario = st.session_state['scenario'] |
|
raw_df = st.session_state['raw_df'] |
|
|
|
|
|
columns = st.columns((1,1,3)) |
|
|
|
with columns[0]: |
|
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends))) |
|
|
|
with columns[1]: |
|
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales))) |
|
|
|
|
|
actual_summary_df = create_channel_summary(scenario) |
|
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating) |
|
|
|
columns = st.columns((2,1)) |
|
|
|
with st.expander('Channel wise overview'): |
|
st.markdown(actual_summary_df.style.set_table_styles( |
|
[{ |
|
'selector': 'th', |
|
'props': [('background-color', '#FFFFF')] |
|
}, |
|
{ |
|
'selector' : 'tr:nth-child(even)', |
|
'props' : [('background-color', '#FFFFF')] |
|
}]).to_html(), unsafe_allow_html=True) |
|
|
|
st.markdown("<hr>",unsafe_allow_html=True) |
|
|
|
|
|
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True) |
|
st.markdown("<hr>",unsafe_allow_html=True) |
|
|
|
|
|
|
|
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True) |
|
st.markdown("<hr>",unsafe_allow_html=True) |
|
|
|
|
|
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating) |
|
selected_channel = scenario.channels.get(selected_channel_name,None) |
|
|
|
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True) |
|
|
|
st.markdown("<hr>",unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|