Spaces:
Running
on
T4
Running
on
T4
File size: 17,678 Bytes
4a2c956 0269c32 7c790c0 61b9ff7 0269c32 733fac9 ea44723 0269c32 cbf69e8 0269c32 733fac9 0269c32 caceb4b 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 7c790c0 733fac9 cbf69e8 733fac9 cbf69e8 733fac9 cbf69e8 e63ee0a 0269c32 e63ee0a 2d1a42e 0269c32 e63ee0a 0269c32 7c790c0 e63ee0a 733fac9 7c790c0 0269c32 733fac9 0269c32 733fac9 cbf69e8 733fac9 0269c32 733fac9 0269c32 733fac9 0269c32 733fac9 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 733fac9 0269c32 cbf69e8 0269c32 cbf69e8 0269c32 cbf69e8 733fac9 cbf69e8 0269c32 cbf69e8 733fac9 0269c32 733fac9 0269c32 733fac9 cbf69e8 733fac9 cbf69e8 733fac9 0269c32 cade2a3 0269c32 cade2a3 cbf69e8 cade2a3 0269c32 cade2a3 0269c32 cade2a3 0269c32 cade2a3 cbf69e8 0269c32 cbf69e8 cade2a3 cbf69e8 ea44723 733fac9 cbf69e8 ea44723 0269c32 ea44723 cbf69e8 733fac9 0269c32 cbf69e8 6cdf548 0269c32 e63ee0a 0269c32 733fac9 a00d592 8ecee14 cbf69e8 e63ee0a 733fac9 0269c32 733fac9 e63ee0a 2d1a42e cbf69e8 733fac9 0269c32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import os, gc, copy, torch, re
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
gen_limit = 500
gen_limit_long = 800
title = "RWKV-x060-World-7B-v3-20241112-ctx4096"
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
# model_path = '/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-7b' # conda activate torch2; cd /mnt/program/_RWKV_/_ref_/_gradio_/RWKV-Gradio-2; python app_tab.py
# model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
args = model.args
eng_name = 'rwkv-x060-eng_single_round_qa-7B-20240516-ctx2048'
eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
state_eng_raw = torch.load(eng_file)
state_eng = [None] * args.n_layer * 3
chn_name = 'rwkv-x060-chn_single_round_qa-7B-20240516-ctx2048'
chn_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{chn_name}.pth")
state_chn_raw = torch.load(chn_file)
state_chn = [None] * args.n_layer * 3
wyw_name = 'rwkv-x060-chn_文言文和古典名著_single_round_qa-7B-20240601-ctx2048'
wyw_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{wyw_name}.pth")
state_wyw_raw = torch.load(wyw_file)
state_wyw = [None] * args.n_layer * 3
for i in range(args.n_layer):
dd = model.strategy[i]
dev = dd.device
atype = dd.atype
state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state_wyw[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state_wyw[i*3+1] = state_wyw_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
state_wyw[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
def generate_prompt(instruction, input=""):
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
if input:
return f"""Instruction: {instruction}\n\nInput: {input}\n\nResponse:"""
else:
return f"""User: hi\n\nAssistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\nUser: {instruction}\n\nAssistant:"""
def qa_prompt(instruction):
instruction = instruction.strip().replace('\r\n','\n')
instruction = re.sub(r'\n+', '\n', instruction)
return f"User: {instruction}\n\nAssistant:"""
penalty_decay = 0.996
def evaluate(
ctx,
token_count=gen_limit,
temperature=1.0,
top_p=0.3,
presencePenalty = 0.3,
countPenalty = 0.3,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
ctx = ctx.strip()
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
def evaluate_eng(
ctx,
token_count=gen_limit,
temperature=1.0,
top_p=0.3,
presencePenalty=0.3,
countPenalty=0.3,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
ctx = qa_prompt(ctx)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = copy.deepcopy(state_eng)
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
def evaluate_chn(
ctx,
token_count=gen_limit,
temperature=1.0,
top_p=0.3,
presencePenalty=0.3,
countPenalty=0.3,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
ctx = qa_prompt(ctx)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = copy.deepcopy(state_chn)
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
def evaluate_wyw(
ctx,
token_count=gen_limit,
temperature=1.0,
top_p=0.3,
presencePenalty=0.3,
countPenalty=0.3,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
ctx = qa_prompt(ctx)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = copy.deepcopy(state_wyw)
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
examples = [
["Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.", gen_limit, 1, 0.3, 0.5, 0.5],
["Assistant: How can we persuade Elon Musk to follow you on Twitter? Let's think step by step and provide an expert response.", gen_limit, 1, 0.3, 0.5, 0.5],
[generate_prompt("東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。"), gen_limit, 1, 0.3, 0.5, 0.5],
[generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), gen_limit, 1, 0.3, 0.5, 0.5],
["A few light taps upon the pane made her turn to the window. It had begun to snow again.", gen_limit, 1, 0.3, 0.5, 0.5],
['''Edward: I am Edward Elric from Fullmetal Alchemist.\n\nUser: Hello Edward. What have you been up to recently?\n\nEdward:''', gen_limit, 1, 0.3, 0.5, 0.5],
[generate_prompt("Write a simple webpage. When a user clicks the button, it shows a random joke from a list of 4 jokes."), 500, 1, 0.3, 0.5, 0.5],
['''Japanese: 春の初め、桜の花が満開になる頃、小さな町の片隅にある古びた神社の境内は、特別な雰囲気に包まれていた。\n\nEnglish:''', gen_limit, 1, 0.3, 0.5, 0.5],
["En una pequeña aldea escondida entre las montañas de Andalucía, donde las calles aún conservaban el eco de antiguas leyendas, vivía un joven llamado Alejandro.", gen_limit, 1, 0.3, 0.5, 0.5],
["Dans le cœur battant de Paris, sous le ciel teinté d'un crépuscule d'or et de pourpre, se tenait une petite librairie oubliée par le temps.", gen_limit, 1, 0.3, 0.5, 0.5],
["في تطور مذهل وغير مسبوق، أعلنت السلطات المحلية في العاصمة عن اكتشاف أثري قد يغير مجرى التاريخ كما نعرفه.", gen_limit, 1, 0.3, 0.5, 0.5],
['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。\n但愿大宇宙能够忽略这个误差。\n程心和关一帆进入了飞船,智子最后也进来了。她早就不再穿那身华丽的和服了,她现在身着迷彩服,再次成为一名轻捷精悍的战士,她的身上佩带着许多武器和生存装备,最引人注目的是那把插在背后的武士刀。\n“放心,我在,你们就在!”智子对两位人类朋友说。\n聚变发动机启动了,推进器发出幽幽的蓝光,''', gen_limit, 1, 0.3, 0.5, 0.5],
]
examples_eng = [
["How can I craft an engaging story featuring vampires on Mars?", gen_limit_long, 1, 0.2, 0.3, 0.3],
["Compare the business models of Apple and Google.", gen_limit_long, 1, 0.2, 0.3, 0.3],
["In JSON format, list the top 5 tourist attractions in Paris.", gen_limit_long, 1, 0.2, 0.3, 0.3],
["Write an outline for a fantasy novel where dreams can alter reality.", gen_limit_long, 1, 0.2, 0.3, 0.3],
["Can fish get thirsty?", gen_limit_long, 1, 0.2, 0.3, 0.3],
["Write a Bash script to check disk usage and send alerts if it's too high.", gen_limit_long, 1, 0.2, 0.3, 0.3],
["Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes.", gen_limit_long, 1, 0.2, 0.3, 0.3],
]
examples_chn = [
["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
["以 JSON 格式解释冰箱是如何工作的。", gen_limit_long, 1, 0.2, 0.3, 0.3],
["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
]
examples_wyw = [
["我和前男友分手了", gen_limit_long, 1, 0.2, 0.3, 0.3],
["量子计算机的原理", gen_limit_long, 1, 0.2, 0.3, 0.3],
["李白和杜甫的结拜故事", gen_limit_long, 1, 0.2, 0.3, 0.3],
["林黛玉和伏地魔的关系是什么?", gen_limit_long, 1, 0.2, 0.3, 0.3],
["我被同事陷害了,帮我写一篇文言文骂他", gen_limit_long, 1, 0.2, 0.3, 0.3],
]
##########################################################################
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title}</h1>\n</div>")
with gr.Tab("=== Base Model (Raw Generation) ==="):
gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) base model. Supports 100+ world languages and code. RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [400+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(lines=2, label="Raw Input", value="Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.")
token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.5)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.5)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=30)
data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)
|