File size: 17,678 Bytes
4a2c956
0269c32
7c790c0
 
61b9ff7
 
 
0269c32
733fac9
ea44723
0269c32
cbf69e8
0269c32
 
733fac9
0269c32
caceb4b
0269c32
 
 
 
cbf69e8
0269c32
 
cbf69e8
0269c32
 
cbf69e8
0269c32
cbf69e8
0269c32
 
 
 
cbf69e8
0269c32
 
 
 
 
 
cbf69e8
0269c32
cbf69e8
 
 
 
 
 
0269c32
 
 
cbf69e8
0269c32
 
 
7c790c0
733fac9
 
 
 
cbf69e8
733fac9
cbf69e8
733fac9
cbf69e8
 
 
 
e63ee0a
0269c32
 
e63ee0a
2d1a42e
0269c32
e63ee0a
0269c32
 
 
7c790c0
 
 
 
e63ee0a
 
733fac9
7c790c0
 
 
 
 
 
0269c32
733fac9
 
 
0269c32
733fac9
 
 
 
cbf69e8
733fac9
0269c32
733fac9
0269c32
 
 
733fac9
 
 
 
 
 
 
0269c32
733fac9
 
 
 
 
 
cbf69e8
 
0269c32
cbf69e8
0269c32
 
 
cbf69e8
 
 
 
 
 
 
 
 
 
 
 
 
0269c32
cbf69e8
 
733fac9
0269c32
cbf69e8
 
 
 
 
 
0269c32
cbf69e8
0269c32
 
 
cbf69e8
 
 
 
733fac9
cbf69e8
 
0269c32
cbf69e8
 
 
 
 
 
 
733fac9
0269c32
733fac9
0269c32
 
 
733fac9
cbf69e8
 
 
 
 
 
733fac9
 
 
 
cbf69e8
733fac9
0269c32
cade2a3
 
 
0269c32
cade2a3
 
 
 
cbf69e8
cade2a3
0269c32
cade2a3
0269c32
 
 
cade2a3
 
 
 
 
 
 
0269c32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cade2a3
 
 
 
 
 
cbf69e8
 
 
 
 
 
 
0269c32
cbf69e8
 
 
 
 
 
cade2a3
cbf69e8
ea44723
 
 
 
 
 
 
733fac9
 
cbf69e8
ea44723
 
 
0269c32
ea44723
 
cbf69e8
733fac9
0269c32
 
 
 
 
 
 
 
 
 
 
 
cbf69e8
6cdf548
0269c32
e63ee0a
 
0269c32
733fac9
a00d592
8ecee14
cbf69e8
 
e63ee0a
 
 
 
733fac9
0269c32
733fac9
e63ee0a
2d1a42e
cbf69e8
733fac9
0269c32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import os, gc, copy, torch, re
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
gen_limit = 500
gen_limit_long = 800
title = "RWKV-x060-World-7B-v3-20241112-ctx4096"

os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)

from rwkv.model import RWKV

model_path = hf_hub_download(repo_id="BlinkDL/rwkv-6-world", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
# model_path = '/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-7b' # conda activate torch2; cd /mnt/program/_RWKV_/_ref_/_gradio_/RWKV-Gradio-2; python app_tab.py
# model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')

from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

args = model.args
eng_name = 'rwkv-x060-eng_single_round_qa-7B-20240516-ctx2048'
eng_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{eng_name}.pth")
state_eng_raw = torch.load(eng_file)
state_eng = [None] * args.n_layer * 3

chn_name = 'rwkv-x060-chn_single_round_qa-7B-20240516-ctx2048'
chn_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{chn_name}.pth")
state_chn_raw = torch.load(chn_file)
state_chn = [None] * args.n_layer * 3

wyw_name = 'rwkv-x060-chn_文言文和古典名著_single_round_qa-7B-20240601-ctx2048'
wyw_file = hf_hub_download(repo_id="BlinkDL/temp-latest-training-models", filename=f"{wyw_name}.pth")
state_wyw_raw = torch.load(wyw_file)
state_wyw = [None] * args.n_layer * 3

for i in range(args.n_layer):
    dd = model.strategy[i]
    dev = dd.device
    atype = dd.atype    
    state_eng[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
    state_eng[i*3+1] = state_eng_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
    state_eng[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()

    state_chn[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
    state_chn[i*3+1] = state_chn_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
    state_chn[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()

    state_wyw[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
    state_wyw[i*3+1] = state_wyw_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
    state_wyw[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}\n\nInput: {input}\n\nResponse:"""
    else:
        return f"""User: hi\n\nAssistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\nUser: {instruction}\n\nAssistant:"""

def qa_prompt(instruction):
    instruction = instruction.strip().replace('\r\n','\n')
    instruction = re.sub(r'\n+', '\n', instruction)
    return f"User: {instruction}\n\nAssistant:"""

penalty_decay = 0.996

def evaluate(
    ctx,
    token_count=gen_limit,
    temperature=1.0,
    top_p=0.3,
    presencePenalty = 0.3,
    countPenalty = 0.3,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = ctx.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

def evaluate_eng(
    ctx,
    token_count=gen_limit,
    temperature=1.0,
    top_p=0.3,
    presencePenalty=0.3,
    countPenalty=0.3,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = qa_prompt(ctx)
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = copy.deepcopy(state_eng)
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

def evaluate_chn(
    ctx,
    token_count=gen_limit,
    temperature=1.0,
    top_p=0.3,
    presencePenalty=0.3,
    countPenalty=0.3,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = qa_prompt(ctx)
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = copy.deepcopy(state_chn)
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

def evaluate_wyw(
    ctx,
    token_count=gen_limit,
    temperature=1.0,
    top_p=0.3,
    presencePenalty=0.3,
    countPenalty=0.3,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = qa_prompt(ctx)
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = copy.deepcopy(state_wyw)
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')  
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

examples = [
    ["Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["Assistant: How can we persuade Elon Musk to follow you on Twitter? Let's think step by step and provide an expert response.", gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。"), gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), gen_limit, 1, 0.3, 0.5, 0.5],
    ["A few light taps upon the pane made her turn to the window. It had begun to snow again.", gen_limit, 1, 0.3, 0.5, 0.5],
    ['''Edward: I am Edward Elric from Fullmetal Alchemist.\n\nUser: Hello Edward. What have you been up to recently?\n\nEdward:''', gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("Write a simple webpage. When a user clicks the button, it shows a random joke from a list of 4 jokes."), 500, 1, 0.3, 0.5, 0.5],
    ['''Japanese: 春の初め、桜の花が満開になる頃、小さな町の片隅にある古びた神社の境内は、特別な雰囲気に包まれていた。\n\nEnglish:''', gen_limit, 1, 0.3, 0.5, 0.5],
    ["En una pequeña aldea escondida entre las montañas de Andalucía, donde las calles aún conservaban el eco de antiguas leyendas, vivía un joven llamado Alejandro.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["Dans le cœur battant de Paris, sous le ciel teinté d'un crépuscule d'or et de pourpre, se tenait une petite librairie oubliée par le temps.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["في تطور مذهل وغير مسبوق، أعلنت السلطات المحلية في العاصمة عن اكتشاف أثري قد يغير مجرى التاريخ كما نعرفه.", gen_limit, 1, 0.3, 0.5, 0.5],
    ['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。\n但愿大宇宙能够忽略这个误差。\n程心和关一帆进入了飞船,智子最后也进来了。她早就不再穿那身华丽的和服了,她现在身着迷彩服,再次成为一名轻捷精悍的战士,她的身上佩带着许多武器和生存装备,最引人注目的是那把插在背后的武士刀。\n“放心,我在,你们就在!”智子对两位人类朋友说。\n聚变发动机启动了,推进器发出幽幽的蓝光,''', gen_limit, 1, 0.3, 0.5, 0.5],
]

examples_eng = [
    ["How can I craft an engaging story featuring vampires on Mars?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Compare the business models of Apple and Google.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["In JSON format, list the top 5 tourist attractions in Paris.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Write an outline for a fantasy novel where dreams can alter reality.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Can fish get thirsty?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Write a Bash script to check disk usage and send alerts if it's too high.", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes.", gen_limit_long, 1, 0.2, 0.3, 0.3],
]

examples_chn = [
    ["怎样写一个在火星上的吸血鬼的有趣故事?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["比较苹果和谷歌的商业模式。", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["鱼会口渴吗?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["以 JSON 格式解释冰箱是如何工作的。", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["编写一个Bash脚本来检查磁盘使用情况,如果使用量过高则发送警报。", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["用HTML编写一个简单的网站。当用户点击按钮时,从4个笑话的列表中随机显示一个笑话。", gen_limit_long, 1, 0.2, 0.3, 0.3],
]

examples_wyw = [
    ["我和前男友分手了", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["量子计算机的原理", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["李白和杜甫的结拜故事", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["林黛玉和伏地魔的关系是什么?", gen_limit_long, 1, 0.2, 0.3, 0.3],
    ["我被同事陷害了,帮我写一篇文言文骂他", gen_limit_long, 1, 0.2, 0.3, 0.3],
]

##########################################################################

with gr.Blocks(title=title) as demo:
    gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title}</h1>\n</div>")

    with gr.Tab("=== Base Model (Raw Generation) ==="):
        gr.Markdown(f"This is [RWKV-6](https://huggingface.co/BlinkDL/rwkv-6-world) base model. Supports 100+ world languages and code. RWKV is a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM), and we have [400+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). Demo limited to ctxlen {ctx_limit}.")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=2, label="Raw Input", value="Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response.")
                token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.5)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.5)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=30)
        data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Examples", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])

demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)