File size: 2,303 Bytes
4c95dc7
 
 
 
 
 
 
 
 
 
 
 
 
3214177
4c95dc7
1855f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c95dc7
 
 
0a4803e
 
 
 
 
 
 
4c95dc7
0a4803e
 
 
 
 
 
 
4c95dc7
 
 
 
 
 
 
 
 
0a4803e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from langchain_text_splitters import RecursiveCharacterTextSplitter
from qdrant_client import QdrantClient
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_qdrant import QdrantVectorStore, Qdrant
import uuid
import chainlit as cl
import os
from helper_functions import process_file, add_to_qdrant

chat_model = ChatOpenAI(model="gpt-4o-mini")
te3_small = OpenAIEmbeddings(model="text-embedding-3-small")
set_llm_cache(InMemoryCache())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100)
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""
rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},]
rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""
chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)])

@cl.on_chat_start
async def on_chat_start():
    # qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"])
    # qdrant_store = Qdrant(
    #     client=qdrant_client,
    #     collection_name="kai_test_docs",
    #     embeddings=te3_small
    # )
    # retriever = qdrant_store.as_retriever()

    # global retrieval_augmented_qa_chain
    # retrieval_augmented_qa_chain = (
    #     {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
    #     | RunnablePassthrough.assign(context=itemgetter("context"))
    #     | chat_prompt
    #     | chat_model
    # )

    await cl.Message(content="YAsk away!").send()

@cl.author_rename
def rename(orig_author: str):
    return "AI Assistant"

@cl.on_message
async def main(message: cl.Message):
    # response = retrieval_augmented_qa_chain.invoke({"question": message.content})
    # await cl.Message(content=response.content).send()
    await cl.Message(content="Response").send()