Spaces:
Runtime error
Runtime error
import gradio as gr | |
import sys | |
from huggingface_hub import ModelCard, HfApi | |
import requests | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Patch | |
from collections import defaultdict | |
from networkx.drawing.nx_pydot import graphviz_layout | |
from io import BytesIO | |
from PIL import Image | |
TITLE = """ | |
<div align="center"> | |
<p style="font-size: 36px;">🌳 Model Family Tree</p> | |
</div><br/> | |
<p>Automatically calculate the <strong>family tree of a given model</strong>. It also displays the type of license each model uses (permissive, noncommercial, or unknown).</p> | |
<p>You can also run the code in this <a href="https://colab.research.google.com/drive/1s2eQlolcI1VGgDhqWIANfkfKvcKrMyNr?usp=sharing">Colab notebook</a>. Special thanks to <a href="https://huggingface.co/leonardlin">leonardlin</a> for his caching implementation. See also mrfakename's version in <a href="https://huggingface.co/spaces/mrfakename/merge-model-tree">this space</a>.</p> | |
""" | |
# Define the model ID | |
MODEL_ID = "mlabonne/NeuralBeagle14-7B" | |
# Define a class to cache model cards | |
class CachedModelCard(ModelCard): | |
_cache = {} | |
def load(cls, model_id: str, **kwargs) -> "ModelCard": | |
if model_id not in cls._cache: | |
try: | |
print('REQUEST ModelCard:', model_id) | |
cls._cache[model_id] = super().load(model_id, **kwargs) | |
except: | |
cls._cache[model_id] = None | |
else: | |
print('CACHED:', model_id) | |
return cls._cache[model_id] | |
# Function to get model names from a YAML file | |
def get_model_names_from_yaml(url): | |
"""Get a list of parent model names from the yaml file.""" | |
model_tags = [] | |
response = requests.get(url) | |
if response.status_code == 200: | |
model_tags.extend([item for item in response.content if '/' in str(item)]) | |
return model_tags | |
# Function to get the color of the model based on its license | |
def get_license_color(model): | |
"""Get the color of the model based on its license.""" | |
try: | |
card = CachedModelCard.load(model) | |
license = card.data.to_dict()['license'].lower() | |
# Define permissive licenses | |
permissive_licenses = ['mit', 'bsd', 'apache-2.0', 'openrail'] # Add more as needed | |
# Check license type | |
if any(perm_license in license for perm_license in permissive_licenses): | |
return 'lightgreen' # Permissive licenses | |
else: | |
return 'lightcoral' # Noncommercial or other licenses | |
except Exception as e: | |
print(f"Error retrieving license for {model}: {e}") | |
return 'lightgray' | |
# Function to find model names in the family tree | |
def get_model_names(model, genealogy, found_models=None, visited_models=None): | |
print('---') | |
print(model) | |
if found_models is None: | |
found_models = set() | |
if visited_models is None: | |
visited_models = set() | |
if model in visited_models: | |
print("Model already visited...") | |
return found_models | |
visited_models.add(model) | |
try: | |
card = CachedModelCard.load(model) | |
card_dict = card.data.to_dict() | |
license = card_dict['license'] | |
model_tags = [] | |
if 'base_model' in card_dict: | |
model_tags = card_dict['base_model'] | |
if 'tags' in card_dict and not model_tags: | |
tags = card_dict['tags'] | |
model_tags = [model_name for model_name in tags if '/' in model_name] | |
if not model_tags: | |
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/merge.yml")) | |
if not model_tags: | |
model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/mergekit_config.yml")) | |
if not isinstance(model_tags, list): | |
model_tags = [model_tags] if model_tags else [] | |
found_models.add(model) | |
for model_tag in model_tags: | |
genealogy[model_tag].append(model) | |
get_model_names(model_tag, genealogy, found_models, visited_models) | |
except Exception as e: | |
print(f"Could not find model names for {model}: {e}") | |
return found_models | |
def find_root_nodes(G): | |
""" Find all nodes in the graph with no predecessors """ | |
return [n for n, d in G.in_degree() if d == 0] | |
def max_width_of_tree(G): | |
""" Calculate the maximum width of the tree """ | |
max_width = 0 | |
for root in find_root_nodes(G): | |
width_at_depth = calculate_width_at_depth(G, root) | |
local_max_width = max(width_at_depth.values()) | |
max_width = max(max_width, local_max_width) | |
return max_width | |
def calculate_width_at_depth(G, root): | |
""" Calculate width at each depth starting from a given root """ | |
depth_count = defaultdict(int) | |
queue = [(root, 0)] | |
while queue: | |
node, depth = queue.pop(0) | |
depth_count[depth] += 1 | |
for child in G.successors(node): | |
queue.append((child, depth + 1)) | |
return depth_count | |
# Function to create the family tree | |
def create_family_tree(start_model): | |
genealogy = defaultdict(list) | |
get_model_names(start_model, genealogy) # Assuming this populates the genealogy | |
print("Number of models:", len(CachedModelCard._cache)) | |
# Create a directed graph | |
G = nx.DiGraph() | |
# Add nodes and edges to the graph | |
for parent, children in genealogy.items(): | |
for child in children: | |
G.add_edge(parent, child) | |
try: | |
# Get max depth and width | |
max_depth = nx.dag_longest_path_length(G) + 1 | |
max_width = max_width_of_tree(G) + 1 | |
except: | |
# Get max depth and width | |
max_depth = 21 | |
max_width = 9 | |
# Estimate plot size | |
height = max(8, 1.6 * max_depth) | |
width = max(8, 6 * max_width) | |
# Set Graphviz layout attributes for a bottom-up tree | |
plt.figure(figsize=(width, height)) | |
pos = graphviz_layout(G, prog="dot") | |
# Determine node colors based on license | |
node_colors = [get_license_color(node) for node in G.nodes()] | |
# Create a label mapping with line breaks | |
labels = {node: node.replace("/", "\n") for node in G.nodes()} | |
# Draw the graph | |
nx.draw(G, pos, labels=labels, with_labels=True, node_color=node_colors, font_size=12, node_size=8_000, edge_color='black') | |
# Create a legend for the colors | |
legend_elements = [ | |
Patch(facecolor='lightgreen', label='Permissive'), | |
Patch(facecolor='lightcoral', label='Noncommercial'), | |
Patch(facecolor='lightgray', label='Unknown') | |
] | |
plt.legend(handles=legend_elements, loc='upper left') | |
plt.title(f"{start_model}'s Family Tree", fontsize=20) | |
# Capture the plot as an image in memory | |
img_buffer = BytesIO() | |
plt.savefig(img_buffer, format='png', bbox_inches='tight') | |
plt.close() | |
img_buffer.seek(0) | |
# Open the image using PIL | |
img = Image.open(img_buffer) | |
return img | |
with gr.Blocks() as demo: | |
gr.Markdown(TITLE) | |
model_id = gr.Textbox(label="Model ID", value="mlabonne/NeuralBeagle14-7B") | |
btn = gr.Button("Create tree") | |
out = gr.Image() | |
btn.click(fn=create_family_tree, inputs=model_id, outputs=out) | |
demo.queue(api_open=False).launch(show_api=False) | |
create_family_tree(MODEL_ID) |