File size: 8,754 Bytes
99220ed
 
 
 
6b21734
 
 
 
 
767d463
9c6fa4d
225bf42
 
99220ed
068e84d
 
 
 
99220ed
 
 
 
225bf42
 
 
 
068e84d
 
 
767d463
0ba53c8
 
 
 
 
 
 
 
 
 
 
 
99220ed
6b21734
99220ed
6b21734
 
 
 
 
 
99220ed
6b21734
 
 
 
 
 
 
 
 
 
 
 
99220ed
6b21734
 
99220ed
 
 
 
 
 
6b21734
 
99220ed
 
 
 
 
 
 
068e84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b21734
a88e67a
225bf42
 
 
 
 
6b21734
 
a88e67a
99220ed
 
6b21734
99220ed
 
 
6b21734
 
 
c64f061
56c280b
6b21734
 
 
 
 
 
 
 
 
 
 
 
 
56c280b
 
6b21734
0ba53c8
 
 
99220ed
ef13efd
6b21734
 
60d4e94
 
 
 
 
 
 
99220ed
 
767d463
99220ed
6b21734
99220ed
 
6b21734
 
 
 
225bf42
6b21734
068e84d
 
99220ed
 
 
068e84d
 
 
 
225bf42
 
99220ed
6b21734
0ba53c8
 
 
6b21734
 
0ba53c8
a88e67a
 
 
 
6b21734
a88e67a
 
068e84d
 
3982c1e
068e84d
99220ed
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
from functools import lru_cache
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize
nltk.downlaod('wordnet')
from gensim.models import KeyedVectors
from nltk.corpus import wordnet
import random

# Load spaCy model
nlp = spacy.load("en_core_web_sm")

# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')

# Load pre-trained word vectors (this may take a while)
word_vectors = KeyedVectors.load_word2vec_format('vectors/GoogleNews-vectors-negative300.bin', binary=True)

def load_model():
    model_name = "DevBM/t5-large-squad"
    model = T5ForConditionalGeneration.from_pretrained(model_name)
    tokenizer = T5Tokenizer.from_pretrained(model_name)
    return model, tokenizer

# Initialize session state for model and tokenizer
if 'model' not in st.session_state:
    st.session_state.model, st.session_state.tokenizer = load_model()

# Use the model and tokenizer from session state
model = st.session_state.model
tokenizer = st.session_state.tokenizer

# Function to extract keywords using combined techniques
def extract_keywords(text):
    # Use RAKE
    rake = Rake()
    rake.extract_keywords_from_text(text)
    rake_keywords = set(rake.get_ranked_phrases())
    
    # Use spaCy for NER and POS tagging
    doc = nlp(text)
    spacy_keywords = set([ent.text for ent in doc.ents])
    spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
    
    # Use TF-IDF
    vectorizer = TfidfVectorizer(stop_words='english')
    X = vectorizer.fit_transform([text])
    tfidf_keywords = set(vectorizer.get_feature_names_out())
    
    # Combine all keywords
    combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
    
    return list(combined_keywords)

# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
    sentences = sent_tokenize(text)
    keyword_sentence_mapping = {}
    for keyword in keywords:
        for i, sentence in enumerate(sentences):
            if keyword in sentence:
                # Combine current sentence with surrounding sentences for context
                start = max(0, i - context_window_size)
                end = min(len(sentences), i + context_window_size + 1)
                context = ' '.join(sentences[start:end])
                if keyword not in keyword_sentence_mapping:
                    keyword_sentence_mapping[keyword] = context
                else:
                    keyword_sentence_mapping[keyword] += ' ' + context
    return keyword_sentence_mapping

def get_similar_words(word, n=3):
    try:
        similar_words = word_vectors.most_similar(word, topn=n)
        return [word for word, _ in similar_words]
    except KeyError:
        return []

def get_synonyms(word, n=3):
    synonyms = []
    for syn in wordnet.synsets(word):
        for lemma in syn.lemmas():
            if lemma.name() != word and lemma.name() not in synonyms:
                synonyms.append(lemma.name())
                if len(synonyms) == n:
                    return synonyms
    return synonyms

def generate_options(answer, context, n=3):
    options = [answer]
    
    # Try to get similar words based on word embeddings
    similar_words = get_similar_words(answer, n)
    options.extend(similar_words)
    
    # If we don't have enough options, try synonyms
    if len(options) < n + 1:
        synonyms = get_synonyms(answer, n - len(options) + 1)
        options.extend(synonyms)
    
    # If we still don't have enough options, extract other entities from the context
    if len(options) < n + 1:
        doc = nlp(context)
        entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
        options.extend(entities[:n - len(options) + 1])
    
    # If we still need more options, add some random words from the context
    if len(options) < n + 1:
        context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
        options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
    
    # Ensure we have the correct number of unique options
    options = list(dict.fromkeys(options))[:n+1]
    
    # Shuffle the options
    random.shuffle(options)
    
    return options

# Function to perform entity linking using Wikipedia API
@lru_cache(maxsize=128)
def entity_linking(keyword):
    page = wiki_wiki.page(keyword)
    if page.exists():
        return page.fullurl
    return None

# Function to generate questions using beam search
def generate_question(context, answer, num_beams):
    input_text = f"<context> {context} <answer> {answer}"
    input_ids = tokenizer.encode(input_text, return_tensors='pt')
    outputs = model.generate(input_ids, num_beams=num_beams, early_stopping=True)
    question = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return question

# Function to export questions to CSV
def export_to_csv(data):
    df = pd.DataFrame(data, columns=["Context", "Answer", "Question"])
    csv = df.to_csv(index=False,encoding='utf-8')
    return csv

# Function to export questions to PDF
def export_to_pdf(data):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    
    for context, answer, question in data:
        pdf.multi_cell(0, 10, f"Context: {context}")
        pdf.multi_cell(0, 10, f"Answer: {answer}")
        pdf.multi_cell(0, 10, f"Question: {question}")
        pdf.ln(10)
    
    # pdf.output("questions.pdf")
    return pdf.output(name='questions.pdf',dest='S').encode('latin1')

if 'data' not in st.session_state:
    st.session_state.data = None

# Streamlit interface
st.title(":blue[Question Generator from Text]")
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")

with st.sidebar:
    st.subheader("Customization Options")
    # Customization options
    num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
    context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
    num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
    question_complexity = st.selectbox("Select question complexity", ["Simple", "Intermediate", "Complex"])
if st.button("Generate Questions"):
    if text:
        load_model()
        keywords = extract_keywords(text)
        keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
        
        st.subheader("Generated Questions:")
        data = []
        for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
            if i >= num_questions:
                break
            linked_entity = entity_linking(keyword)
            question = generate_question(context, keyword, num_beams=num_beams)
            options = generate_options(keyword, context)

            st.write(f"**Context:** {context}")
            st.write(f"**Answer:** {keyword}")
            st.write(f"**Question:** {question}")
            st.write(f"**Options:**")
            for j, option in options:
                st.write(f"{chr(65+j)}. {option}")

            if linked_entity:
                st.write(f"**Entity Link:** {linked_entity}")
            st.write("---")
            data.append((context, keyword, question))

        # Add the data to session state
        st.session_state.data = data
        
        # Export buttons
        if st.session_state.data is not None:
            with st.sidebar:
                st.subheader('Download Content')
                csv_data = export_to_csv(data)
                st.download_button(label="CSV Format", data=csv_data, file_name='questions.csv', mime='text/csv')

                pdf_data = export_to_pdf(data)
                st.download_button(label="PDF Format", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
        if st.session_state.data is not None:
            st.markdown("You can download the data from the sidebar.")

    
    else:
        st.write("Please enter some text to generate questions.")