Spaces:
Sleeping
Sleeping
File size: 7,760 Bytes
bf0e217 50d5b44 bf0e217 d572e10 bf0e217 2080e4d 50d5b44 bf0e217 50d5b44 bf0e217 50d5b44 bf0e217 50d5b44 bf0e217 50d5b44 bf0e217 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 95ac724 2080e4d 831ab6e 2080e4d 831ab6e 2080e4d 50d5b44 831ab6e 2080e4d 831ab6e 50d5b44 2080e4d 50d5b44 2080e4d d22fc6f 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d ebdf65e 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d 50d5b44 2080e4d 8e10984 50d5b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import re
import io
from datetime import datetime
import PyPDF2
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from groq import Groq
import gradio as gr
from docxtpl import DocxTemplate
# Set your API key for Groq
os.environ["GROQ_API_KEY"] = "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"
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# --- PDF/Text Extraction Functions --- #
def extract_text_from_file(file_path):
"""Extracts text from PDF or TXT files based on file extension."""
if file_path.endswith('.pdf'):
return extract_text_from_pdf(file_path)
elif file_path.endswith('.txt'):
return extract_text_from_txt(file_path)
else:
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
def extract_text_from_pdf(pdf_file_path):
"""Extracts text from a PDF file."""
with open(pdf_file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
return text
def extract_text_from_txt(txt_file_path):
"""Extracts text from a .txt file."""
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
return txt_file.read()
# --- Skill Extraction with Llama Model --- #
def extract_skills_llama(text):
"""Extracts skills from the text using the Llama model via Groq API."""
try:
response = client.chat.completions.create(
messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}],
model="llama3-70b-8192",
)
skills = response.choices[0].message.content.split(', ') # Expecting a comma-separated list
return skills
except Exception as e:
raise RuntimeError(f"Error during skill extraction: {e}")
# --- Job Description Processing --- #
def process_job_description(job_description_text):
"""Processes the job description text and extracts relevant skills."""
job_description_text = preprocess_text(job_description_text)
return extract_skills_llama(job_description_text)
# --- Text Preprocessing --- #
def preprocess_text(text):
"""Preprocesses text for analysis (lowercase, punctuation removal)."""
text = text.lower()
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
return re.sub(r'\s+', ' ', text).strip() # Remove extra whitespace
# --- Resume Similarity Calculation --- #
def calculate_resume_similarity(resume_text, job_description_text):
"""Calculates similarity score between resume and job description using a sentence transformer model."""
model_name = "cross-encoder/stsb-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer(resume_text, job_description_text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
similarity_score = torch.sigmoid(outputs.logits).item() # Get the raw score
return similarity_score
# --- Communication Generation --- #
def communication_generator(resume_skills, job_description_skills, similarity_score, max_length=150):
"""Generates a communication response based on the extracted skills from the resume and job description."""
model_name = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Assess candidate fit based on similarity score
fit_status = "fit for the job" if similarity_score >= 0.7 else "not a fit for the job"
# Create a more detailed communication message
message = (
f"After a thorough review of the candidate's resume, we found a significant alignment "
f"between their skills and the job description requirements. The candidate possesses the following "
f"key skills: {', '.join(resume_skills)}. These align well with the job requirements, particularly in areas such as "
f"{', '.join(job_description_skills)}. The candidate’s diverse expertise suggests they would make a valuable addition to our team. "
f"We believe the candidate is {fit_status}. If further evaluation is needed, please let us know how we can assist."
)
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)
return tokenizer.decode(response[0], skip_special_tokens=True)
# --- Sentiment Analysis --- #
def sentiment_analysis(text):
"""Analyzes the sentiment of the text."""
model_name = "mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
predicted_sentiment = torch.argmax(outputs.logits).item()
return ["Negative", "Neutral", "Positive"][predicted_sentiment]
# --- Resume Analysis Function --- #
def analyze_resume(resume_file, job_description_file):
"""Analyzes the resume and job description, returning similarity score, skills, and communication response."""
# Extract resume text based on file type
try:
resume_text = extract_text_from_file(resume_file.name)
job_description_text = extract_text_from_file(job_description_file.name)
except ValueError as ve:
return str(ve)
# Analyze texts
job_description_skills = process_job_description(job_description_text)
resume_skills = extract_skills_llama(resume_text)
similarity_score = calculate_resume_similarity(resume_text, job_description_text)
communication_response = communication_generator(resume_skills, job_description_skills, similarity_score)
sentiment = sentiment_analysis(resume_text)
return (
f"Similarity Score: {similarity_score * 100:.2f}%", # Convert to percentage
communication_response,
f"Sentiment: {sentiment}",
", ".join(resume_skills),
", ".join(job_description_skills),
)
# --- Offer Letter Generation --- #
def generate_offer_letter(template_file, candidate_name, role, start_date, hours):
"""Generates an offer letter from a template."""
try:
start_date = datetime.strptime(start_date, "%Y-%m-%d").strftime("%B %d, %Y")
except ValueError:
return "Invalid date format. Please use YYYY-MM-DD."
context = {
'candidate_name': candidate_name,
'role': role,
'start_date': start_date,
'hours': hours
}
doc = DocxTemplate(template_file)
doc.render(context)
offer_letter_path = f"{candidate_name.replace(' ', '_')}_offer_letter.docx"
doc.save(offer_letter_path)
return offer_letter_path
# --- Gradio Interface --- #
iface = gr.Interface(
fn=analyze_resume,
inputs=[
gr.File(label="Upload Resume (PDF/TXT)"),
gr.File(label="Upload Job Description (PDF/TXT)")
],
outputs=[
gr.Textbox(label="Similarity Score"),
gr.Textbox(label="Communication Response"),
gr.Textbox(label="Sentiment Analysis"),
gr.Textbox(label="Extracted Resume Skills"),
gr.Textbox(label="Extracted Job Description Skills"),
],
title="Resume and Job Description Analyzer",
description="This tool analyzes a resume against a job description to extract skills, calculate similarity, and generate communication responses."
)
iface.launch()
|