File size: 9,340 Bytes
ffead1e
 
 
292d3f6
559b00c
ffead1e
 
 
 
 
559b00c
 
 
 
 
 
 
 
ffead1e
 
559b00c
ffead1e
559b00c
ffead1e
 
 
 
 
 
 
 
 
559b00c
 
 
ffead1e
 
 
 
 
 
 
 
 
 
 
559b00c
ffead1e
 
e206c8a
ffead1e
 
 
559b00c
e206c8a
ffead1e
559b00c
ffead1e
 
8408dd7
ffead1e
559b00c
e206c8a
ffead1e
 
559b00c
ffead1e
559b00c
ffead1e
 
 
 
 
559b00c
ffead1e
 
a258601
559b00c
 
 
 
fa7808c
e206c8a
 
8408dd7
e206c8a
 
 
 
 
8408dd7
 
e206c8a
e491319
4987969
e491319
e206c8a
 
8408dd7
e206c8a
 
 
e491319
8408dd7
 
 
 
e491319
 
 
 
 
 
 
 
 
 
 
 
 
ffead1e
05118bf
 
 
559b00c
 
e491319
559b00c
 
 
05118bf
559b00c
 
05118bf
559b00c
 
 
 
 
 
 
05118bf
4987969
e206c8a
8408dd7
e206c8a
 
ffead1e
05118bf
fa7808c
8408dd7
 
 
e491319
ffead1e
e206c8a
 
8408dd7
e206c8a
 
e491319
 
 
 
 
 
05118bf
8408dd7
05118bf
 
 
8408dd7
 
e491319
 
05118bf
 
 
e206c8a
05118bf
 
8408dd7
05118bf
 
 
 
8408dd7
 
e491319
 
05118bf
 
8408dd7
 
 
 
 
05118bf
7b7c424
05118bf
8408dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05118bf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import json
import torch
import time

from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL

# Automatic device detection
if torch.cuda.is_available():
    device_type = "cuda"
    device_selection = "cuda:0"
else:
    device_type = "cpu"
    device_selection = "cpu"

class Tango:
    def __init__(self, name = "declare-lab/tango2", device = device_selection):
        
        path = snapshot_download(repo_id = name)
        
        vae_config = json.load(open("{}/vae_config.json".format(path)))
        stft_config = json.load(open("{}/stft_config.json".format(path)))
        main_config = json.load(open("{}/main_config.json".format(path)))
        
        self.vae = AutoencoderKL(**vae_config).to(device)
        self.stft = TacotronSTFT(**stft_config).to(device)
        self.model = AudioDiffusion(**main_config).to(device)
        
        vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
        stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
        main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
        
        self.vae.load_state_dict(vae_weights)
        self.stft.load_state_dict(stft_weights)
        self.model.load_state_dict(main_weights)

        print ("Successfully loaded checkpoint from:", name)
        
        self.vae.eval()
        self.stft.eval()
        self.model.eval()
        
        self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
        
    def chunks(self, lst, n):
        # Yield successive n-sized chunks from a list
        for i in range(0, len(lst), n):
            yield lst[i:i + n]
        
    def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
        # Generate audio for a single prompt string
        with torch.no_grad():
            latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
            mel = self.vae.decode_first_stage(latents)
            wave = self.vae.decode_to_waveform(mel)
        return wave
    
    def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
        # Generate audio for a list of prompt strings
        outputs = []
        for k in tqdm(range(0, len(prompts), batch_size)):
            batch = prompts[k: k + batch_size]
            with torch.no_grad():
                latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
                mel = self.vae.decode_first_stage(latents)
                wave = self.vae.decode_to_waveform(mel)
                outputs += [item for item in wave]
        if samples == 1:
            return outputs
        return list(self.chunks(outputs, samples))

# Initialize TANGO

tango = Tango(device = "cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)

def check(
    prompt,
    output_number,
    steps,
    guidance
):
    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")
    if not output_number in [1, 2, 3]:
        raise gr.Error("Please ask for 1, 2 or 3 output files.")

def update_display(output_number):
    return [gr.update(visible = (2 <= output_number)), gr.update(visible = (output_number == 3))]

def text2audio(
    prompt,
    output_number,
    steps,
    guidance
):
    start = time.time()
    output_wave = tango.generate(prompt, steps, guidance, output_number)
    output_wave_1 = gr.make_waveform((16000, output_wave[0]))
    output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None
    output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None

    end = time.time()
    secondes = int(end - start)
    minutes = secondes // 60
    secondes = secondes - (minutes * 60)
    hours = minutes // 60
    minutes = minutes - (hours * 60)
    return [
        output_wave_1,
        output_wave_2,
        output_wave_3,
        "Start again to get a different result. The output have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec."
    ]

# Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("""
        <p style="text-align: center;">
        <b><big><big><big>Text-to-Audio</big></big></big></b>
        <br/>Generates 10 second of sound effect from description, freely, without account, without watermark, that you can download.
        </p>
        <br/>
        <br/>
        ✨ Powered by <i>Tango 2</i> AI.
        <br/>
        <ul>
        <li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
        </ul>
        <br/>
        🐌 Slow process... Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/>
        <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
        <br/>
        βš–οΈ You can use, modify and share the generated sounds but not for commercial uses.
        """
    )
    input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
    with gr.Accordion("Advanced options", open = False):
        output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
        denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
        guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)

    submit = gr.Button("Generate πŸš€", variant = "primary")

    output_audio_1 = gr.Audio(label = "Generated Audio #1/3")
    output_audio_2 = gr.Audio(label = "Generated Audio #2/3")
    output_audio_3 = gr.Audio(label = "Generated Audio #3/3")
    information = gr.Label(label = "Information")

    submit.click(fn = check, inputs = [
        input_text,
        output_number,
        denoising_steps,
        guidance_scale
    ], outputs = [], queue = False, show_progress = False).success(fn = update_display, inputs = [
        output_number
    ], outputs = [
        output_audio_2,
        output_audio_3
    ], queue = False, show_progress = False).success(fn = text2audio, inputs = [
        input_text,
        output_number,
        denoising_steps,
        guidance_scale
    ], outputs = [
        output_audio_1,
        output_audio_2,
        output_audio_3,
        information
    ], scroll_to_output = True)

    gr.Examples(
        fn = text2audio,
	    inputs = [
            input_text,
            output_number,
            denoising_steps,
            guidance_scale
        ],
	    outputs = [
            output_audio_1,
            output_audio_2,
            output_audio_3,
            information
        ],
        examples = [
                ["A hammer is hitting a wooden surface", 1, 100, 3],
                ["Peaceful and calming ambient music with singing bowl and other instruments.", 1, 100, 3],
                ["A man is speaking in a small room.", 1, 100, 3],
                ["A female is speaking followed by footstep sound", 1, 100, 3],
                ["Wooden table tapping sound followed by water pouring sound.", 1, 100, 3],
            ],
        cache_examples = "lazy",
    )
    
    gr.Markdown(
        """
        ## How to prompt your sound
        You can use round brackets to increase the importance of a part:
        ```
        Peaceful and (calming) ambient music with singing bowl and other instruments
        ```
        You can use several levels of round brackets to even more increase the importance of a part:
        ```
        (Peaceful) and ((calming)) ambient music with singing bowl and other instruments
        ```
        You can use number instead of several round brackets:
        ```
        (Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
        ```
        You can do the same thing with square brackets to decrease the importance of a part:
        ```
        (Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
        """
    )
        
    interface.queue(10).launch()