Spaces:
Runtime error
Runtime error
File size: 9,393 Bytes
ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e e206c8a ffead1e 559b00c e206c8a ffead1e 559b00c ffead1e 8408dd7 ffead1e 559b00c e206c8a ffead1e 559b00c ffead1e 559b00c ffead1e 559b00c ffead1e a258601 559b00c fa7808c e206c8a 8408dd7 e206c8a 8408dd7 e206c8a e491319 e206c8a 8408dd7 e206c8a e491319 8408dd7 e491319 ffead1e 05118bf 559b00c e491319 559b00c 05118bf 559b00c 05118bf 559b00c 05118bf 8408dd7 e206c8a 8408dd7 e206c8a ffead1e 05118bf fa7808c 8408dd7 e491319 ffead1e e206c8a 8408dd7 e206c8a e491319 05118bf 8408dd7 05118bf 8408dd7 e491319 05118bf e206c8a 05118bf 8408dd7 05118bf 8408dd7 e491319 05118bf 8408dd7 05118bf 7b7c424 05118bf 8408dd7 05118bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import json
import torch
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name = "declare-lab/tango2", device = device_selection):
path = snapshot_download(repo_id = name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print ("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
def chunks(self, lst, n):
# Yield successive n-sized chunks from a list
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
# Generate audio for a single prompt string
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
# Generate audio for a list of prompt strings
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k + batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device = "cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
def check(
prompt,
output_number,
steps,
guidance
):
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
if not output_number in [1, 2, 3]:
raise gr.Error("Please ask for 1, 2 or 3 output files.")
def update_display(output_number):
return [gr.update(visible = True), gr.update(visible = (2 <= output_number)), gr.update(visible = (output_number == 3))]
def text2audio(
prompt,
output_number,
steps,
guidance
):
start = time.time()
output_wave = tango.generate(prompt, steps, guidance, output_number)
output_wave_1 = gr.make_waveform((16000, output_wave[0]))
output_wave_2 = gr.make_waveform((16000, output_wave[1])) if (2 <= output_number) else None
output_wave_3 = gr.make_waveform((16000, output_wave[2])) if (output_number == 3) else None
end = time.time()
secondes = int(end - start)
minutes = secondes // 60
secondes = secondes - (minutes * 60)
hours = minutes // 60
minutes = minutes - (hours * 60)
return [
output_wave_1,
output_wave_2,
output_wave_3,
"Start again to get a different result. The output have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec."
]
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("""
<p style="text-align: center;">
<b><big><big><big>Text-to-Audio</big></big></big></b>
<br/>Generates 10 second of sound effect from description, freely, without account, without watermark, that you can download.
</p>
<br/>
<br/>
β¨ Powered by <i>Tango 2</i> AI.
<br/>
<ul>
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
</ul>
<br/>
π Slow process... Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
βοΈ You can use, modify and share the generated sounds but not for commercial uses.
"""
)
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse, best quality", lines = 2, autofocus = True)
with gr.Accordion("Advanced options", open = False):
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
submit = gr.Button("Generate π", variant = "primary")
output_audio_1 = gr.Audio(label = "Generated Audio #1/3")
output_audio_2 = gr.Audio(label = "Generated Audio #2/3")
output_audio_3 = gr.Audio(label = "Generated Audio #3/3")
information = gr.Label(label = "Information")
submit.click(fn = check, inputs = [
input_text,
output_number,
denoising_steps,
guidance_scale
], outputs = [], queue = False, show_progress = False).success(fn = update_display, inputs = [
output_number
], outputs = [
output_audio_1,
output_audio_2,
output_audio_3
], queue = False, show_progress = False).success(fn = text2audio, inputs = [
input_text,
output_number,
denoising_steps,
guidance_scale
], outputs = [
output_audio_1,
output_audio_2,
output_audio_3,
information
], scroll_to_output = True)
gr.Examples(
fn = text2audio,
inputs = [
input_text,
output_number,
denoising_steps,
guidance_scale
],
outputs = [
output_audio_1,
output_audio_2,
output_audio_3,
information
],
examples = [
["A hammer is hitting a wooden surface", 1, 100, 3],
["Peaceful and calming ambient music with singing bowl and other instruments.", 1, 100, 3],
["A man is speaking in a small room.", 1, 100, 3],
["A female is speaking followed by footstep sound", 1, 100, 3],
["Wooden table tapping sound followed by water pouring sound.", 1, 100, 3],
],
cache_examples = "lazy",
)
gr.Markdown(
"""
## How to prompt your sound
You can use round brackets to increase the importance of a part:
```
Peaceful and (calming) ambient music with singing bowl and other instruments
```
You can use several levels of round brackets to even more increase the importance of a part:
```
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments
```
You can use number instead of several round brackets:
```
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
```
You can do the same thing with square brackets to decrease the importance of a part:
```
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
"""
)
interface.queue(10).launch() |