for-pinokio / app.py
Fabrice-TIERCELIN's picture
Automatic device detection
559b00c verified
raw
history blame
7.35 kB
import gradio as gr
import json
import torch
import wavio
import spaces
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from gradio import Markdown
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name = "declare-lab/tango2", device = device_selection):
path = snapshot_download(repo_id = name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print ("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
def chunks(self, lst, n):
""" Yield successive n-sized chunks from a list. """
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
""" Generate audio for a single prompt string. """
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave[0]
def generate_for_batch(self, prompts, steps = 200, guidance = 3, samples = 1, batch_size = 8, disable_progress = True):
""" Generate audio for a list of prompt strings. """
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k + batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device = "cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
@spaces.GPU(duration = 60)
def gradio_generate(prompt, steps, guidance):
output_wave = tango.generate(prompt, steps, guidance)
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
output_filename = "temp.wav"
wavio.write(output_filename, output_wave, rate = 16000, sampwidth = 2)
return output_filename
description_text = """
<p style="text-align: center;">
<b><big><big><big>Text-to-Audio</big></big></big></b>
<br/>Generates an audio file, freely, without account, without watermark, that you can download.
</p>
<br/>
<br/>
πŸš€ Powered by <i>Tango 2</i> AI.
<br/>
<ul>
<li>If you need to generate <b>music</b>, I recommend you to use <i>MusicGen</i>,</li>
</ul>
<br/>
🐌 Slow process... Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it works on CPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
βš–οΈ You can use, modify and share the generated sounds but not for commercial uses.
"""
# Gradio input and output components
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
output_audio = gr.Audio(label = "Generated Audio", type = "filepath")
denoising_steps = gr.Slider(label = "Steps", minimum = 100, maximum = 200, value = 100, step = 1, interactive = True)
guidance_scale = gr.Slider(label = "Guidance Scale", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
# Gradio interface
gr_interface = gr.Interface(
fn = gradio_generate,
inputs = [input_text, denoising_steps, guidance_scale],
outputs = [output_audio],
title = "",
description = description_text,
allow_flagging = False,
examples = [
["Quiet speech and then and airplane flying away"],
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"],
["Ducks quack and water splashes with some animal screeching in the background"],
["Describe the sound of the ocean"],
["A woman and a baby are having a conversation"],
["A man speaks followed by a popping noise and laughter"],
["A cup is filled from a faucet"],
["An audience cheering and clapping"],
["Rolling thunder with lightning strikes"],
["A dog barking and a cat mewing and a racing car passes by"],
["Gentle water stream, birds chirping and sudden gun shot"],
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."],
["A dog barking"],
["A cat meowing"],
["Wooden table tapping sound while water pouring"],
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"],
["two gunshots followed by birds flying away while chirping"],
["Whistling with birds chirping"],
["A person snoring"],
["Motor vehicles are driving with loud engines and a person whistles"],
["People cheering in a stadium while thunder and lightning strikes"],
["A helicopter is in flight"],
["A dog barking and a man talking and a racing car passes by"],
],
cache_examples = "lazy", # Turn on to cache.
)
# Launch Gradio app
gr_interface.queue(10).launch()