|
import gradio as gr |
|
import edge_tts |
|
import asyncio |
|
import tempfile |
|
import os |
|
from huggingface_hub import InferenceClient |
|
import re |
|
from streaming_stt_nemo import Model |
|
import torch |
|
import random |
|
|
|
default_lang = "en" |
|
|
|
engines = { default_lang: Model(default_lang) } |
|
|
|
def transcribe(audio): |
|
lang = "en" |
|
model = engines[lang] |
|
text = model.stt_file(audio)[0] |
|
return text |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
def client_fn(model): |
|
if "Mixtral" in model: |
|
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
elif "Llama" in model: |
|
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") |
|
elif "Mistral" in model: |
|
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") |
|
elif "Phi" in model: |
|
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") |
|
else: |
|
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") |
|
|
|
def randomize_seed_fn(seed: int) -> int: |
|
seed = random.randint(0, 999999) |
|
return seed |
|
|
|
system_instructions1 = """ |
|
[SYSTEM] Answer as the FallnAI lab assistant, developed by FallnAI. |
|
Keep conversation friendly, short, clear, and concise. |
|
Avoid unnecessary introductions and answer the user's questions directly. |
|
Respond in a normal, conversational manner while being friendly and helpful. |
|
[USER] |
|
""" |
|
|
|
def models(text, model="Mixtral 8x7B", seed=42): |
|
|
|
seed = int(randomize_seed_fn(seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
client = client_fn(model) |
|
|
|
generate_kwargs = dict( |
|
max_new_tokens=300, |
|
seed=seed |
|
) |
|
formatted_prompt = system_instructions1 + text |
|
stream = client.text_generation( |
|
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
if not response.token.text == "</s>": |
|
output += response.token.text |
|
return output |
|
|
|
async def respond(audio, model, seed): |
|
user = transcribe(audio) |
|
reply = models(user, model, seed) |
|
communicate = edge_tts.Communicate(reply) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
await communicate.save(tmp_path) |
|
yield tmp_path |
|
|
|
DESCRIPTION = """ # <center><b>FallnAI Voice Chat</b></center> |
|
### <center>Your Personal Chat Assistant! </center> |
|
""" |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
select = gr.Dropdown([ 'Mixtral 8x7B', |
|
'Llama 3 8B', |
|
'Mistral 7B v0.3', |
|
'Phi 3 mini', |
|
], |
|
value="Mistral 7B v0.3", |
|
label="Model" |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=999999, |
|
step=1, |
|
value=0, |
|
visible=False |
|
) |
|
input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False) |
|
output = gr.Audio(label="AI", type="filepath", |
|
interactive=True, |
|
autoplay=True, |
|
elem_classes="audio") |
|
gr.Interface( |
|
batch=True, |
|
max_batch_size=10, |
|
fn=respond, |
|
inputs=[input, select, seed], |
|
outputs=[output], live=True) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=200).launch() |