LlamaGen / serve /worker.py
ShoufaChen's picture
vllm
4bfb360
raw
history blame
14.8 kB
"""A GPU worker class."""
import gc
import os
from typing import Any, Dict, List, Optional, Set, Tuple
import torch
import torch.distributed
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, ParallelConfig, SchedulerConfig,
VisionLanguageConfig)
from vllm.distributed import (broadcast_tensor_dict,
ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.distributed.device_communicators import pynccl_utils
from vllm.distributed.device_communicators.custom_all_reduce import (
init_custom_ar)
from vllm.lora.request import LoRARequest
from vllm.model_executor import set_random_seed
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
# from vllm.worker.model_runner import ModelRunner
from vllm.worker.worker_base import WorkerBase
from serve.model_runner import ModelRunner
class Worker(WorkerBase):
"""A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single GPU. The worker is responsible for
maintaining the KV cache and executing the model on the GPU. In case of
distributed inference, each worker is assigned a partition of the model.
"""
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
cache_config: CacheConfig,
load_config: LoadConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
lora_config: Optional[LoRAConfig] = None,
vision_language_config: Optional[VisionLanguageConfig] = None,
is_driver_worker: bool = False,
) -> None:
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.device_config = device_config
self.cache_config = cache_config
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.lora_config = lora_config
self.load_config = load_config
self.is_driver_worker = is_driver_worker
if self.is_driver_worker:
assert self.rank == 0, "The driver worker must have rank 0."
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
self.vision_language_config = vision_language_config
if self.vision_language_config:
assert not self.lora_config, (
"To be tested: vision language model with LoRA settings.")
self.model_runner = ModelRunner(
model_config,
parallel_config,
scheduler_config,
device_config,
load_config=load_config,
lora_config=self.lora_config,
kv_cache_dtype=self.cache_config.cache_dtype,
is_driver_worker=is_driver_worker,
vision_language_config=vision_language_config,
)
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: CacheEngine
self.gpu_cache: List[torch.Tensor]
def init_device(self) -> None:
if self.device_config.device.type == "cuda":
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
# as the number of all_reduce calls increases. This env var disables
# this behavior.
# Related issue:
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# This env var set by Ray causes exceptions with graph building.
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
self.device = torch.device(f"cuda:{self.local_rank}")
torch.cuda.set_device(self.device)
_check_if_gpu_supports_dtype(self.model_config.dtype)
torch.cuda.empty_cache()
self.init_gpu_memory = torch.cuda.mem_get_info()[0]
else:
raise RuntimeError(
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
init_worker_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method,
self.local_rank)
# Set random seed.
set_random_seed(self.model_config.seed)
def load_model(self, args):
self.model_runner.load_model(args)
@torch.inference_mode()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
.. tip::
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.cuda.empty_cache()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize()
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
# NOTE(woosuk): Here we assume that the other processes using the same
# GPU did not change their memory usage during the profiling.
peak_memory = self.init_gpu_memory - free_gpu_memory
assert peak_memory > 0, (
"Error in memory profiling. This happens when the GPU memory was "
"not properly cleaned up before initializing the vLLM instance.")
cache_block_size = self.get_cache_block_size_bytes()
num_gpu_blocks = int(
(total_gpu_memory * self.cache_config.gpu_memory_utilization -
peak_memory) // cache_block_size)
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
cache_block_size)
num_gpu_blocks = max(num_gpu_blocks, 0)
num_cpu_blocks = max(num_cpu_blocks, 0)
if self.model_runner.lora_manager:
self.model_runner.remove_all_loras()
gc.collect()
torch.cuda.empty_cache()
return num_gpu_blocks, num_cpu_blocks
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Allocate GPU and CPU KV cache with the specified number of blocks.
This also warms up the model, which may record CUDA graphs.
"""
raise_if_cache_size_invalid(num_gpu_blocks,
self.cache_config.block_size,
self.model_config.max_model_len)
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
self._init_cache_engine()
self._warm_up_model()
def _init_cache_engine(self):
assert self.cache_config.num_gpu_blocks is not None
self.cache_engine = CacheEngine(self.cache_config, self.model_config,
self.parallel_config)
self.gpu_cache = self.cache_engine.gpu_cache
self.model_runner.set_block_size(self.cache_engine.block_size)
def _warm_up_model(self) -> None:
if not self.model_config.enforce_eager:
self.model_runner.capture_model(self.gpu_cache)
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
set_random_seed(self.model_config.seed)
def cache_swap(
self,
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> None:
# Issue cache operations.
# TODO(woosuk): Profile swapping overhead and optimize if needed.
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
blocks_to_swap_in: Optional[Dict[int, int]] = None,
blocks_to_swap_out: Optional[Dict[int, int]] = None,
blocks_to_copy: Optional[Dict[int, List[int]]] = None,
num_lookahead_slots: int = 0,
) -> List[SamplerOutput]:
if self.is_driver_worker:
assert seq_group_metadata_list is not None
num_seq_groups = len(seq_group_metadata_list)
assert blocks_to_swap_in is not None
assert blocks_to_swap_out is not None
assert blocks_to_copy is not None
data: Dict[str, Any] = {
"num_seq_groups": num_seq_groups,
"blocks_to_swap_in": blocks_to_swap_in,
"blocks_to_swap_out": blocks_to_swap_out,
"blocks_to_copy": blocks_to_copy,
}
broadcast_tensor_dict(data, src=0)
else:
data = broadcast_tensor_dict(src=0)
num_seq_groups = data["num_seq_groups"]
blocks_to_swap_in = data["blocks_to_swap_in"]
blocks_to_swap_out = data["blocks_to_swap_out"]
blocks_to_copy = data["blocks_to_copy"]
assert blocks_to_swap_in is not None
assert blocks_to_swap_out is not None
assert blocks_to_copy is not None
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
# If there is no input, we don't need to execute the model.
if num_seq_groups == 0:
return []
output = self.model_runner.execute_model(seq_group_metadata_list,
self.gpu_cache)
# Worker only supports single-step execution. Wrap the output in a list
# to conform to interface.
return [output]
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.model_runner.list_loras()
@property
def max_model_len(self) -> int:
return self.model_config.max_model_len
@property
def vocab_size(self) -> int:
return self.model_runner.vocab_size
def get_cache_block_size_bytes(self) -> int:
"""Get the size of the KV cache block size in bytes.
"""
return CacheEngine.get_cache_block_size(self.cache_config,
self.model_config,
self.parallel_config)
def init_worker_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
distributed_init_method: Optional[str] = None,
local_rank: int = -1,
) -> None:
"""Initialize the distributed environment."""
init_distributed_environment(parallel_config.world_size, rank,
distributed_init_method, local_rank)
if pynccl_utils.is_initialized():
pynccl_world_size = pynccl_utils.get_world_size()
if pynccl_world_size != parallel_config.world_size:
raise RuntimeError(
"pynccl is already initialized but the pynccl world "
"size does not match parallel_config.world_size "
f"({pynccl_world_size} vs. {parallel_config.world_size}).")
elif parallel_config.world_size > 1:
# NOTE(woosuk): We don't initialize pynccl process group when world size
# is 1.
pynccl_utils.init_process_group(
world_size=parallel_config.world_size,
local_rank=local_rank,
rank=rank,
init_method=distributed_init_method,
)
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)
# Initialize a custom fast all-reduce implementation.
if not parallel_config.disable_custom_all_reduce:
init_custom_ar()
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
if pynccl_utils.is_initialized():
pynccl_utils.all_reduce(torch.zeros(1).cuda())
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
# Check if the GPU supports the dtype.
if torch_dtype == torch.bfloat16:
compute_capability = torch.cuda.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError(
"Bfloat16 is only supported on GPUs with compute capability "
f"of at least 8.0. Your {gpu_name} GPU has compute capability "
f"{compute_capability[0]}.{compute_capability[1]}. "
"You can use float16 instead by explicitly setting the"
"`dtype` flag in CLI, for example: --dtype=half.")
def raise_if_cache_size_invalid(num_gpu_blocks, block_size,
max_model_len) -> None:
if num_gpu_blocks <= 0:
raise ValueError("No available memory for the cache blocks. "
"Try increasing `gpu_memory_utilization` when "
"initializing the engine.")
max_seq_len = block_size * num_gpu_blocks
if max_model_len > max_seq_len:
raise ValueError(
f"The model's max seq len ({max_model_len}) "
"is larger than the maximum number of tokens that can be "
f"stored in KV cache ({max_seq_len}). Try increasing "
"`gpu_memory_utilization` or decreasing `max_model_len` when "
"initializing the engine.")