FuseChat-7B / app.py
GGLS's picture
Upload app.py
13ea389 verified
raw
history blame
4.19 kB
import streamlit as st
import torch
import time
from threading import Thread
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer
)
# App title
st.set_page_config(page_title="πŸ˜Άβ€πŸŒ«οΈ FuseChat Model")
root_path = "FuseAI"
model_name = "FuseChat-7B-VaRM"
@st.cache_resource
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(
f"{root_path}/{model_name}",
trust_remote_code=True,
)
if tokenizer.pad_token_id is None:
if tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(
f"{root_path}/{model_name}",
device_map="auto",
load_in_8bit=True,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model.eval()
return model, tokenizer
with st.sidebar:
st.title('πŸ˜Άβ€πŸŒ«οΈ FuseChat')
st.write('This chatbot is created using FuseChat, a model developed by FuseAI')
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=5.0, value=0.1, step=0.01)
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
top_k = st.sidebar.slider('top_k', min_value=1, max_value=1000, value=50, step=1)
repetition_penalty = st.sidebar.slider('repetition penalty', min_value=1., max_value=2., value=1.2, step=0.05)
max_length = st.sidebar.slider('max new tokens', min_value=32, max_value=2000, value=240, step=8)
with st.spinner('loading model..'):
model, tokenizer = load_model(model_name)
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
def generate_fusechat_response():
# string_dialogue = "You are a helpful and harmless assistant."
string_dialogue = ""
for dict_message in st.session_state.messages:
if dict_message["role"] == "user":
string_dialogue += "GPT4 Correct User: " + dict_message["content"] + "<|end_of_turn|>"
else:
string_dialogue += "GPT4 Correct Assistant: " + dict_message["content"] + "<|end_of_turn|>"
input_ids = tokenizer(f"{string_dialogue}GPT4 Correct Assistant: ", return_tensors="pt").input_ids
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_length,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
return "".join(outputs)
# User-provided prompt
if prompt := st.chat_input("Hello there! How are you doing?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_fusechat_response()
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
time.sleep(0.05)
placeholder.markdown(full_response + "β–Œ")
placeholder.markdown(full_response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)