Spaces:
Sleeping
Sleeping
File size: 38,963 Bytes
89e696a ff3d566 36f3034 00825cb be51ad8 6e09d82 524fe4d 9db7393 cf71bb0 9db7393 06e133e e51f0f6 681ee74 e51f0f6 633bb6b 0671d23 633bb6b e51f0f6 ab3a4e6 e51f0f6 ab3a4e6 e51f0f6 ab3a4e6 e51f0f6 ab3a4e6 fe7656a 89cddd0 ad618df dfabd70 eca3864 ea19f03 801e1c6 ad618df f4c152d f637681 d634aab af4b90c 6160f84 ea19f03 ad618df 6e09d82 524fe4d 6160f84 ad618df 7a47c88 ad618df 7a47c88 af4b90c 7a47c88 ad618df f637681 45bb8a5 449983f dfabd70 ad618df f0e35ad dfabd70 433fed0 e51f0f6 433fed0 e51f0f6 433fed0 e51f0f6 433fed0 e51f0f6 433fed0 e51f0f6 433fed0 681ee74 e51f0f6 681ee74 e51f0f6 ad618df ea19f03 ad618df d4041f6 ad618df d4041f6 00825cb fe7656a 2c1bfb4 37f2997 5307a00 4d60872 fe7656a a1eac8d 4d60872 714d8c4 4ec0aad d84930f 3691535 43d8107 d84930f 7a66fe8 eb4cbbc 714d8c4 a1eac8d f643712 c8290d2 f643712 e00ad5f 633bb6b e00ad5f 10e6d40 714d8c4 d634aab ec8d56f 56f6289 ec8d56f 0cf8b26 ab9c8b0 44c5a0b 36f3034 ca9aa30 45bb8a5 36df00a ff3d566 2148f2d ff3d566 801e1c6 ff3d566 eb433cf ad618df 801e1c6 ad618df ff3d566 ef1d523 ad618df ef1d523 ff3d566 6183395 57e8206 4508fcb ad618df 6183395 801e1c6 ef1d523 ad618df ef1d523 6183395 ad618df ef1d523 6c1c89e ad618df ddf19f6 ef1d523 6183395 ad618df ef1d523 2cd23d8 801e1c6 ad618df 801e1c6 ad618df 2cd23d8 28d005f 2148f2d ad618df 4508fcb 3583778 4508fcb 3583778 4508fcb 2148f2d ad618df 8b97595 ad618df 8b97595 ad618df 43107a1 ad618df 7c03572 ad618df 7c03572 801e1c6 ad618df 43107a1 3272ad3 ad618df 3d8a22e ad618df accd0d7 9f5e05c cf71bb0 ad618df cf71bb0 36df00a 9db7393 6e09d82 9db7393 ad618df 9db7393 524fe4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
import streamlit as st
import time
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
import lightgbm as lgb
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import mean_absolute_error, mean_squared_error
from joblib import dump, load
from utils import recomienda_tfid
# Page configuration
st.set_page_config(page_title="DeepInsightz", page_icon=":bar_chart:", layout="wide")
# Custom CSS for dynamic theme styling
# Streamlit detects light and dark mode automatically via the user's settings in Hugging Face Spaces
if st.get_option("theme.base") == "dark":
background_color = "#282828"
text_color = "white"
metric_box_color = "#4f4f4f"
sidebar_color = "#282828"
plot_bgcolor = "rgba(0, 0, 0, 0)"
primary_color = '#00FF00' # for positive delta
negative_color = '#FF0000' # for negative delta
else:
background_color = "#f4f4f4"
text_color = "#black"
metric_box_color = "#dee2e8"
sidebar_color = "#dee2e8"
plot_bgcolor = "#f4f4f4"
primary_color = '#228B22' # for positive delta in light mode
negative_color = '#8B0000' # for negative delta in light mode
st.markdown(f"""
<style>
body {{
background-color: {background_color};
color: {text_color};
}}
[data-testid="stMetric"] {{
background-color: {metric_box_color};
border-radius: 10px;
text-align: center;
padding: 15px 0;
margin-bottom: 20px;
}}
[data-testid="stMetricLabel"] {{
display: flex;
justify-content: center;
align-items: center;
color: {text_color};
}}
[data-testid="stSidebar"] {{
background-color: {sidebar_color};
}}
</style>
""", unsafe_allow_html=True)
# Navigation menu
with st.sidebar:
st.sidebar.title("DeepInsightz")
page = st.sidebar.selectbox("Select the tool you want to use", ["Summary", "Customer Analysis", "Articles Recommendations"])
# Load CSV files at the top
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
pca_data_5 = pd.read_csv('pca_data.csv')
# Generamos la columna total_sales
ventas_clientes['total_sales'] = ventas_clientes[['VENTA_2021', 'VENTA_2022', 'VENTA_2023']].sum(axis=1)
# Ordenar los clientes de mayor a menor según sus ventas totales
ventas_top_100 = ventas_clientes.sort_values(by='total_sales', ascending=False).head(100)
# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings
fieles_df = pd.read_csv("clientes_relevantes.csv")
cestas = pd.read_csv("cestas.csv")
productos = pd.read_csv("productos.csv")
df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
if col != 'CLIENTE':
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
# Ignore the last two columns of df
df = df.iloc[:, :-2]
# Function to get supplier name
def get_supplier_name(code):
code = str(code) # Ensure code is a string
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
return name[0] if len(name) > 0 else code
# Custom Donut Chart with Plotly for Inbound/Outbound Percentage
def create_donut_chart(values, labels, color_scheme, title):
fig = px.pie(
values=values,
names=labels,
hole=0.7,
color_discrete_sequence=color_scheme
)
fig.update_traces(textinfo='percent+label', hoverinfo='label+percent', textposition='inside', showlegend=False)
fig.update_layout(
annotations=[dict(text=f"{int(values[1])}%", x=0.5, y=0.5, font_size=40, showarrow=False)],
title=title,
height=300,
margin=dict(t=30, b=10, l=10, r=10),
paper_bgcolor=plot_bgcolor, # Use theme-dependent background color
plot_bgcolor=plot_bgcolor
)
return fig
# Donut chart with color scheme based on theme
if st.get_option("theme.base") == "dark":
donut_color_scheme = ['#155F7A', '#29b5e8'] # Dark mode colors
else:
donut_color_scheme = ['#007BFF', '#66b5ff'] # Light mode colors
# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
N = len(categories)
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
# Apply square root transformation
sqrt_values = np.sqrt(values)
sqrt_amounts = np.sqrt(amounts)
max_sqrt_value = max(sqrt_values)
normalized_values = [v / max_sqrt_value for v in sqrt_values]
# Adjust scaling for spend values
max_sqrt_amount = max(sqrt_amounts)
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
normalized_values += normalized_values[:1]
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
normalized_amounts += normalized_amounts[:1]
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, size=8, wrap=True)
ax.set_ylim(0, 1)
circles = np.linspace(0, 1, 5)
for circle in circles:
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False)
plt.title(title, size=16, y=1.1)
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
return fig
if page == "Summary":
# st.title("Welcome to DeepInsightz")
# st.markdown("""
# ### Data-driven Customer Clustering
# We analyzed thousands of customers and suppliers to help businesses make smarter sales decisions.
# """)
# Create layout with three columns
col1, col2, col3 = st.columns((1.5, 4, 2.5), gap='medium')
# Left Column (Red): Metrics and Donut Charts
with col1:
st.markdown('#### General Information')
st.metric(label="Range of Dates", value="2021-2023")
st.metric(label="Customers Analysed", value="3.000")
st.metric(label="Unique Products Sold", value="10.702")
st.metric(label="Total Sales Instances", value="764.396")
# Middle Column (White): 3D Cluster Model and Bar Chart
with col2:
st.markdown('#### 3D Customer Clusters')
# Create 3D PCA plot using actual data from pca_data_5
fig_cluster = px.scatter_3d(
pca_data_5,
x='PC1',
y='PC2',
z='PC3',
color='cluster_id',
hover_name='CustomerID',
)
fig_cluster.update_layout(
scene=dict(aspectratio=dict(x=1, y=1, z=0.8)), # Adjusted aspect ratio for better balance
margin=dict(t=10, b=10, l=10, r=10), # Tighten margins further
height=600, # Slightly increased height for better visibility
)
st.plotly_chart(fig_cluster, use_container_width=True)
# Right Column (Blue): Key Metrics Overview and Data Preparation Summary
with col3:
# Mostrar la tabla con los 100 mejores clientes
st.markdown('#### Top 100 Clients by Total Sales')
# Configurar columnas para mostrar los clientes y las ventas totales
st.dataframe(ventas_top_100[['codigo_cliente', 'total_sales']],
column_order=("codigo_cliente", "total_sales"),
hide_index=True,
width=450, # Ajustar el ancho de la tabla
height=600, # Ajustar la altura de la tabla
column_config={
"codigo_cliente": st.column_config.TextColumn(
"Client Code",
),
"total_sales": st.column_config.ProgressColumn(
"Total Sales (€)",
format="%d",
min_value=0,
max_value=ventas_top_100['total_sales'].max()
)}
)
# Customer Analysis Page
elif page == "Customer Analysis":
st.markdown("""
<h2 style='text-align: center; font-size: 2.5rem;'>Customer Analysis</h2>
<p style='text-align: center; font-size: 1.2rem; color: gray;'>
Enter the customer code to explore detailed customer insights,
including past sales, predictions for the current year, and manufacturer-specific information.
</p>
""", unsafe_allow_html=True)
# Combine text input and dropdown into a single searchable selectbox
customer_code = st.selectbox(
"Search and Select Customer Code",
df['CLIENTE'].unique(), # All customer codes
format_func=lambda x: str(x), # Ensures the values are displayed as strings
help="Start typing to search for a specific customer code"
)
if st.button("Calcular"):
if customer_code:
with st.spinner("We are identifying the customer's cluster..."):
# Find Customer's Cluster
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
time.sleep(1)
if not customer_match.empty:
cluster = customer_match['cluster_id'].values[0]
with st.spinner(f"Selecting predictive model..."):
# Load the Corresponding Model
model_path = f'models/modelo_cluster_{cluster}.txt'
gbm = lgb.Booster(model_file=model_path)
with st.spinner("Getting the data ready..."):
# Load predict data for that cluster
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
# Convert cliente_id to string
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
with st.spinner("Filtering data..."):
# Filter for the specific customer
customer_code_str = str(customer_code)
customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
with st.spinner("Generating sales predictions..."):
if not customer_data.empty:
# Define features consistently with the training process
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
# Prepare data for prediction
X_predict = customer_data[features]
# Convert categorical features to 'category' dtype
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
for feature in categorical_features:
X_predict[feature] = X_predict[feature].astype('category')
# Make Prediction for the selected customer
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
# Reassemble the results
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
results['ventas_predichas'] = y_pred
# Load actual data
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
if not actual_sales.empty:
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
how='left')
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
results['ventas_reales'].fillna(0, inplace=True)
# st.write("### Final Results DataFrame:")
# st.write(results.head())
# st.write(f"Shape: {results.shape}")
# Calculate metrics only for non-null actual sales
valid_results = results.dropna(subset=['ventas_reales'])
non_zero_actuals = valid_results[valid_results['ventas_reales'] != 0]
if not valid_results.empty:
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
mape = np.mean(np.abs((non_zero_actuals['ventas_reales'] - non_zero_actuals['ventas_predichas']) / non_zero_actuals['ventas_reales'])) * 100
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
# st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
# st.write(f"MAE: {mae:.2f}€")
# st.write(f"MAPE: {mape:.2f}%")
# st.write(f"RMSE: {rmse:.2f}")
# # Analysis of results
# threshold_good = 100 # You may want to adjust this threshold
# if mae < threshold_good:
# st.success(f"Customer {customer_code} is performing well based on the predictions.")
# else:
# st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
# else:
# st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
# st.write("### Debug Information for Radar Chart:")
# st.write(f"Shape of customer_data: {customer_data.shape}")
# st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}")
# Get percentage of units sold for each manufacturer
customer_df = df[df["CLIENTE"] == str(customer_code)] # Get the customer data
all_manufacturers = customer_df.iloc[:, 1:].T # Exclude CLIENTE column (manufacturers are in columns)
all_manufacturers.index = all_manufacturers.index.astype(str)
# Get total sales for each manufacturer from euros_proveedor
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
sales_data.index = sales_data.index.astype(str)
# Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
# Ensure all values are numeric
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
# Sort manufacturers by percentage of units and get top 10
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
# Sort manufacturers by total sales and get top 10
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
# Combine top manufacturers from both lists and get up to 20 unique manufacturers
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
# Filter out manufacturers that are not present in both datasets
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
# st.write(f"Number of combined top manufacturers: {len(combined_top)}")
if combined_top:
# Create a DataFrame with combined data for these top manufacturers
combined_data = pd.DataFrame({
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
}).fillna(0)
# Sort by units, then by sales
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
# Filter out manufacturers with 0 units
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
# If we have less than 3 non-zero manufacturers, add some zero-value ones
if len(non_zero_manufacturers) < 3:
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
else:
manufacturers_to_show = non_zero_manufacturers
values = manufacturers_to_show['units'].tolist()
amounts = manufacturers_to_show['sales'].tolist()
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
# st.write(f"### Results for top {len(manufacturers)} manufacturers:")
# for manufacturer, value, amount in zip(manufacturers, values, amounts):
# (f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
if manufacturers: # Only create the chart if we have data
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
st.pyplot(fig)
else:
st.warning("No data available to create the radar chart.")
else:
st.warning("No combined top manufacturers found.")
# Ensure codigo_cliente in ventas_clientes is a string
ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
# Ensure customer_code is a string and strip any spaces
customer_code = str(customer_code).strip()
# if customer_code in ventas_clientes['codigo_cliente'].unique():
# (f"Customer {customer_code} found in ventas_clientes")
# else:
# (f"Customer {customer_code} not found in ventas_clientes")
# Customer sales 2021-2024 (if data exists)
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
if all(col in ventas_clientes.columns for col in sales_columns):
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
if not customer_sales_data.empty:
customer_sales = customer_sales_data[sales_columns].values[0]
years = ['2021', '2022', '2023']
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning(f"No historical sales data found for customer {customer_code}")
else:
st.warning("Sales data for 2021-2023 not available in the dataset.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
else:
st.warning("Please select a customer.")
# Customer Recommendations Page
elif page == "Articles Recommendations":
st.title("Articles Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their basket.
""")
st.write("Select items and assign quantities for the basket:")
# Mostrar lista de artículos disponibles
available_articles = productos['ARTICULO'].unique()
selected_articles = st.multiselect("Select Articles", available_articles)
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
quantities = {}
for article in selected_articles:
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
if st.button("Calcular"): # Añadimos el botón "Calcular"
# Crear una lista de artículos basada en la selección
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
if new_basket:
# Procesar la lista para recomendar
recommendations_df = recomienda_tfid(new_basket)
if not recommendations_df.empty:
st.write("### Recommendations based on the current basket:")
st.dataframe(recommendations_df)
else:
st.warning("No recommendations found for the provided basket.")
else:
st.warning("Please select at least one article and set its quantity.")
# # Customer Recommendations Page
# elif page == "Articles Recommendations":
# st.title("Articles Recommendations")
# st.markdown("""
# Get tailored recommendations for your customers based on their basket.
# """)
# # Campo input para cliente
# partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
# if partial_code:
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
# else:
# filtered_customers = df
# customer_list = filtered_customers['CLIENTE'].unique()
# customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
# # Definición de la función recomienda
# def recomienda(new_basket):
# # Calcular la matriz TF-IDF
# tfidf = TfidfVectorizer()
# tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
# # Convertir la nueva cesta en formato TF-IDF
# new_basket_str = ' '.join(new_basket)
# new_basket_tfidf = tfidf.transform([new_basket_str])
# # Comparar la nueva cesta con las anteriores
# similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
# # Obtener los índices de las cestas más similares
# similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
# # Crear un diccionario para contar las recomendaciones
# recommendations_count = {}
# total_similarity = 0
# # Recomendar productos de cestas similares
# for idx in similar_indices:
# sim_score = similarities[0][idx]
# total_similarity += sim_score
# products = cestas.iloc[idx]['Cestas'].split()
# for product in products:
# if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
# if product.strip() in recommendations_count:
# recommendations_count[product.strip()] += sim_score
# else:
# recommendations_count[product.strip()] = sim_score
# # Calcular la probabilidad relativa de cada producto recomendado
# recommendations_with_prob = []
# if total_similarity > 0: # Verificar que total_similarity no sea cero
# recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
# else:
# print("No se encontraron similitudes suficientes para calcular probabilidades.")
# recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
# # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
# recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])
# # Agregar las recomendaciones al DataFrame usando pd.concat
# for product, prob in recommendations_with_prob:
# # Buscar la descripción en el DataFrame de productos
# description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
# if not description.empty:
# # Crear un nuevo DataFrame temporal para la recomendación
# temp_df = pd.DataFrame({
# 'ARTICULO': [product],
# 'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado
# 'PROBABILIDAD': [prob]
# })
# # Concatenar el DataFrame temporal al DataFrame de recomendaciones
# recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)
# return recommendations_df
# # Comprobar si el cliente está en el CSV de fieles
# is_fiel = customer_code in fieles_df['Cliente'].astype(str).values
# if customer_code:
# if is_fiel:
# st.write(f"### Customer {customer_code} is a loyal customer.")
# option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
# if option == "By Purchase History":
# st.warning("Option not available... aún")
# elif option == "By Current Basket":
# st.write("Select the items and assign quantities for the basket:")
# # Mostrar lista de artículos disponibles
# available_articles = productos['ARTICULO'].unique()
# selected_articles = st.multiselect("Select Articles", available_articles)
# # Crear inputs para ingresar las cantidades de cada artículo seleccionado
# quantities = {}
# for article in selected_articles:
# quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
# if st.button("Calcular"): # Añadimos el botón "Calcular"
# # Crear una lista de artículos basada en la selección
# new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
# if new_basket:
# # Procesar la lista para recomendar
# recommendations_df = recomienda(new_basket)
# if not recommendations_df.empty:
# st.write("### Recommendations based on the current basket:")
# st.dataframe(recommendations_df)
# else:
# st.warning("No recommendations found for the provided basket.")
# else:
# st.warning("Please select at least one article and set its quantity.")
# else:
# st.write(f"### Customer {customer_code} is not a loyal customer.")
# st.write("Select items and assign quantities for the basket:")
# # Mostrar lista de artículos disponibles
# available_articles = productos['ARTICULO'].unique()
# selected_articles = st.multiselect("Select Articles", available_articles)
# # Crear inputs para ingresar las cantidades de cada artículo seleccionado
# quantities = {}
# for article in selected_articles:
# quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
# if st.button("Calcular"): # Añadimos el botón "Calcular"
# # Crear una lista de artículos basada en la selección
# new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
# if new_basket:
# # Procesar la lista para recomendar
# recommendations_df = recomienda(new_basket)
# if not recommendations_df.empty:
# st.write("### Recommendations based on the current basket:")
# st.dataframe(recommendations_df)
# else:
# st.warning("No recommendations found for the provided basket.")
# else:
# st.warning("Please select at least one article and set its quantity.")
# Customer Analysis Page
# elif page == "Customer Analysis":
# st.title("Customer Analysis")
# st.markdown("Use the tools below to explore your customer data.")
# partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
# if partial_code:
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
# else:
# filtered_customers = df
# customer_list = filtered_customers['CLIENTE'].unique()
# customer_code = st.selectbox("Select Customer Code", customer_list)
# if st.button("Calcular"):
# if customer_code:
# # Find Customer's Cluster
# customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
# if not customer_match.empty:
# cluster = customer_match['cluster_id'].values[0]
# st.write(f"Customer {customer_code} belongs to cluster {cluster}")
# # Load the Corresponding Model
# model_path = f'models/modelo_cluster_{cluster}.txt'
# gbm = lgb.Booster(model_file=model_path)
# st.write(f"Loaded model for cluster {cluster}")
# # Load X_predict for that cluster
# X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
# # Filter for the specific customer
# X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code]
# if not X_cliente.empty:
# # Prepare data for prediction
# features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes'])
# # Make Prediction for the selected customer
# y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration)
# # Reassemble the results
# results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
# results['ventas_predichas'] = y_pred
# st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
# # Load actual data
# df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
# actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
# if not actual_sales.empty:
# results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
# on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
# how='left')
# results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
# # Calculate metrics only for non-null actual sales
# valid_results = results.dropna(subset=['ventas_reales'])
# if not valid_results.empty:
# mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
# mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
# rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
# st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
# st.write(f"MAE: {mae:.2f}")
# st.write(f"MAPE: {mape:.2f}%")
# st.write(f"RMSE: {rmse:.2f}")
# # Analysis of results
# threshold_good = 100 # You may want to adjust this threshold
# if mae < threshold_good:
# st.success(f"Customer {customer_code} is performing well based on the predictions.")
# else:
# st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
# else:
# st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
# # Show the radar chart
# all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column
# all_manufacturers.index = all_manufacturers.index.astype(str)
# sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
# sales_data.index = sales_data.index.astype(str)
# sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
# sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
# top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
# top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
# combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
# combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
# combined_data = pd.DataFrame({
# 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
# 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
# }).fillna(0)
# combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
# non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
# if len(non_zero_manufacturers) < 3:
# zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
# manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
# else:
# manufacturers_to_show = non_zero_manufacturers
# values = manufacturers_to_show['units'].tolist()
# amounts = manufacturers_to_show['sales'].tolist()
# manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
# st.write(f"### Results for top {len(manufacturers)} manufacturers:")
# for manufacturer, value, amount in zip(manufacturers, values, amounts):
# st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
# if manufacturers:
# fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
# st.pyplot(fig)
# else:
# st.warning("No data available to create the radar chart.")
# # Show sales over the years graph
# sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
# if all(col in ventas_clientes.columns for col in sales_columns):
# years = ['2021', '2022', '2023']
# customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]
# fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
# fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
# st.plotly_chart(fig_sales)
# else:
# st.warning("Sales data for 2021-2023 not available.")
# else:
# st.warning(f"No prediction data found for customer {customer_code}.")
# else:
# st.warning(f"No data found for customer {customer_code}. Please check the code.")
# else:
# st.warning("Please select a customer.")
|