Spaces:
Running
Running
update org card
Browse files
README.md
CHANGED
@@ -10,12 +10,26 @@ pinned: false
|
|
10 |
# HuggingFaceTB
|
11 |
This is the home for small LLMs (SmolLM) and high quality pre-training datasets, such as [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) and [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus).
|
12 |
|
|
|
13 |
We released:
|
14 |
|
15 |
-
- [
|
16 |
-
- [
|
17 |
-
- [
|
18 |
-
- [
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
10 |
# HuggingFaceTB
|
11 |
This is the home for small LLMs (SmolLM) and high quality pre-training datasets, such as [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) and [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus).
|
12 |
|
13 |
+
|
14 |
We released:
|
15 |
|
16 |
+
- [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu): a filtered version of FineWeb dataset for educational content, paper available [here](https://huggingface.co/papers/2406.17557).
|
17 |
+
- [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia): the largest open synthetic dataset, with 25B tokens and more than 30M samples. It contains synthetic textbooks, blog posts, stories, posts, and WikiHow articles generated by Mixtral-8x7B-Instruct-v0.1. Blog post available [here](https://huggingface.co/blog/cosmopedia).
|
18 |
+
- [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus): the pre-training corpus of SmolLM models including **Cosmopedia v0.2**, **FineWeb-Edu dedup** and **Python-Edu**. Blog post available [here](https://huggingface.co/blog/smollm).
|
19 |
+
- [SmolLM models](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) and [SmolLM2 models](https://huggingface.co/collections/HuggingFaceTB/smollm2-checkpoints-6723884218bcda64b34d7db9): a series of strong small models in three sizes: 135M, 360M and 1.7B
|
20 |
+
|
21 |
+
|
22 |
+
**News 🗞️**
|
23 |
+
- SmolLM2: you can find our most capable model SmolLM2-1.7B here: https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
|
24 |
+
|
25 |
+
<div align="center">
|
26 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/kIUMhq5p_7Vl74lihlS8y.png" width="600"/>
|
27 |
+
<p><em>Evaluation of SmolLM2 and other models on common benchmarks. For more details, refer to the <a href="https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct/" target="_blank">model card</a>.</em></p>
|
28 |
+
</div>
|
29 |
+
|
30 |
+
- We released our SFT mix SmolTalk, a diverse dataset of 1M synthetic instruction and answer pairs to improve instruction following and reasoning: https://huggingface.co/datasets/HuggingFaceTB/smoltalk
|
31 |
|
32 |
+
<div align="center">
|
33 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/hdA2qVsKtoZnPKltNbvZB.png" width="800"/>
|
34 |
+
<p><em>Comparison of models finetuned on SmolTalk and Orca AgentInstruct 1M. For more details, refer to the <a href="https://huggingface.co/datasets/HuggingFaceTB/smoltalk" target="_blank">dataset card</a>.</em></p>
|
35 |
+
</div>
|