File size: 5,621 Bytes
e352103
36be50d
 
e352103
 
 
 
 
36be50d
0a651e1
e352103
 
0a1a1a0
ad382c8
e352103
0a651e1
ad382c8
e352103
e4c787e
e352103
36be50d
e352103
36be50d
 
 
 
 
 
ab94263
 
 
36be50d
 
e352103
 
 
 
 
 
36be50d
e352103
 
0029ec4
 
 
36be50d
0029ec4
 
 
 
 
 
 
 
 
 
 
 
e352103
 
 
 
 
 
0029ec4
e352103
0029ec4
 
 
 
 
e352103
36be50d
 
 
 
 
 
6d64276
 
36be50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
#import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2"
        ).to("cuda")

@spaces.GPU
def model_inference(
    input_dict, history, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
): 
    text = input_dict["text"]
    print(input_dict["files"])
    if len(input_dict["files"]) > 1:
      images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
    elif len(input_dict["files"]) == 1:
      images = [Image.open(input_dict["files"][0]).convert("RGB")]   
    else:
      images = []
    

    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    


    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"} for _ in range(len(images))] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]
    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,

    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)
    # Generate
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True)
    generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""

    thread = Thread(target=model.generate, kwargs=generation_args)
    thread.start()

    yield "..."
    buffer = ""
    
      
    for new_text in streamer:
    
      buffer += new_text
      generated_text_without_prompt = buffer#[len(ext_buffer):]
      time.sleep(0.01)
      yield buffer


examples=[
              [{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
              [{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]},  "Greedy", 0.4, 512, 1.2, 0.8],
              [{"text":  "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
              [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]},   "Greedy", 0.4, 512, 1.2, 0.8],
              [{"text":  "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]},  "Greedy", 0.4, 512, 1.2, 0.8],
      ]
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫", 
                description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.",
                examples=examples,
                textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, 
                        additional_inputs=[gr.Radio(["Top P Sampling",
              "Greedy"],
          value="Greedy",
          label="Decoding strategy",
          #interactive=True,
          info="Higher values is equivalent to sampling more low-probability tokens.",
                                                  
      ), gr.Slider(
          minimum=0.0,
          maximum=5.0,
          value=0.4,
          step=0.1,
          interactive=True,
          label="Sampling temperature",
          info="Higher values will produce more diverse outputs.",
      ),
                                            gr.Slider(
          minimum=8,
          maximum=1024,
          value=512,
          step=1,
          interactive=True,
          label="Maximum number of new tokens to generate",
      ), gr.Slider(
          minimum=0.01,
          maximum=5.0,
          value=1.2,
          step=0.01,
          interactive=True,
          label="Repetition penalty",
          info="1.0 is equivalent to no penalty",
      ), 
         gr.Slider(
          minimum=0.01,
          maximum=0.99,
          value=0.8,
          step=0.01,
          interactive=True,
          label="Top P",
          info="Higher values is equivalent to sampling more low-probability tokens.",
      )],cache_examples=False
                )
     
      
      

demo.launch(debug=True)