Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
import transformers | |
# Perform cache migration | |
transformers.utils.move_cache() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/sdxl-turbo", use_safetensors=True | |
) | |
pipe = pipe.to(device) | |
# Quantize the model | |
pipe.unet = torch.quantization.convert(pipe.unet, inplace=True) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 512 | |
def generate_image( | |
seed, prompt, negative_prompt, guidance_scale, num_inference_steps, width, height | |
): | |
try: | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image | |
except Exception as e: | |
print(f"Error generating image with seed {seed}: {e}") | |
return None | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
): | |
if randomize_seed: | |
seeds = [random.randint(0, MAX_SEED) for _ in range(2)] | |
else: | |
seeds = [seed, seed + 1] | |
images = [] | |
for seed in seeds: | |
image = generate_image( | |
seed, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
num_inference_steps, | |
width, | |
height, | |
) | |
images.append(image) | |
return images | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
f""" | |
# Text-to-Image Gradio Template | |
Currently running on {power_device}. | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result1 = gr.Image(label="Result 1", show_label=False) | |
result2 = gr.Image(label="Result 2", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, # Ensure the number of steps is reasonable | |
step=1, | |
value=2, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result1, result2], | |
) | |
demo.queue().launch() | |