Idor980's picture
Update app.py
1fe3117 verified
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import transformers
# Perform cache migration
transformers.utils.move_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/sdxl-turbo", use_safetensors=True
)
pipe = pipe.to(device)
# Quantize the model
pipe.unet = torch.quantization.convert(pipe.unet, inplace=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
def generate_image(
seed, prompt, negative_prompt, guidance_scale, num_inference_steps, width, height
):
try:
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
except Exception as e:
print(f"Error generating image with seed {seed}: {e}")
return None
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
):
if randomize_seed:
seeds = [random.randint(0, MAX_SEED) for _ in range(2)]
else:
seeds = [seed, seed + 1]
images = []
for seed in seeds:
image = generate_image(
seed,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
width,
height,
)
images.append(image)
return images
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result1 = gr.Image(label="Result 1", show_label=False)
result2 = gr.Image(label="Result 2", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50, # Ensure the number of steps is reasonable
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt])
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result1, result2],
)
demo.queue().launch()